School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Predicting the response of seven Asian glaciers to future climate scenarios using a simple linear glacier model
    Ren, D ; Karoly, DJ (AMER GEOPHYSICAL UNION, 2008-03-11)
    Observations from seven Central Asian glaciers (35–55°N; 70–95°E) are used, together with regional temperature data, to infer uncertain parameters for a simple linear model of the glacier length variations. The glacier model is based on first order glacier dynamics and requires the knowledge of reference states of forcing and glacier perturbation magnitude. An adjoint‐based variational method is used to optimally determine the glacier reference states in 1900 and the uncertain glacier model parameters. The simple glacier model is then used to estimate the glacier length variations until 2060 using regional temperature projections from an ensemble of climate model simulations for a future climate change scenario (SRES A2). For the period 2000–2060, all glaciers are projected to experience substantial further shrinkage, especially those with gentle slopes (e.g., Glacier Chogo Lungma retreats ∼4 km). Although nearly one‐third of the year 2000 length will be reduced for some small glaciers, the existence of the glaciers studied here is not threatened by year 2060. The differences between the individual glacier responses are large. No straightforward relationship is found between glacier size and the projected fractional change of its length.
  • Item
    Thumbnail Image
    Landslide risk analysis using a new constitutive relationship for granular flow
    Ren, Diandong ; Leslie, Lance M. ; KAROLY, DAVID (American Meteorological Society, American Geophysical Union, & Association of American Geographers, 2008)
    In this study, landslide potential is investigated, using a new constitutive relationship for granular flow in a numerical model. Unique to this study is an original relationship between soil moisture and the inertial number for soil particles. This numerical model can be applied to arbitrary soil slab profile configurations and to the analysis of natural disasters, such as mudslides, glacier creeping, avalanches, landslips, and other pyroclastic flows. Here the focus is on mudslides. The authors examine the effects of bed slope and soil slab thickness, soil layered profile configuration, soil moisture content, basal sliding, and the growth of vegetation, and show that increased soil moisture enhances instability primarily by decreasing soil strength, together with increasing loading. Moreover, clay soils generally require a smaller relative saturation than sandy soils for sliding to commence. For a stable configuration, such as a small slope and/or dry soil, the basal sliding is absorbed if the perturbation magnitude is small. However, large perturbations can trigger significant-scale mudslides by liquefying the soil slab. The role of vegetation depends on the wet soil thickness and the spacing between vegetation roots. The thinner the saturated soil layer, the slower the flow, giving the vegetation additional time to extract soil moisture and slow down the flow. By analyzing the effect of the root system on the stress distribution, it is shown that closer tree spacing increases the drag effects on the velocity field, provided that the root system is deeper than the shearing zone. Finally, the authors investigated a two-layer soil profile, namely, sand above clay. A significant stress jump occurs at the interface of the two media.