School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Transport out of the Antarctic polar vortex from a three-dimensional transport model
    Li, SH ; Cordero, EC ; Karoly, DJ (AMER GEOPHYSICAL UNION, 2002-06)
    A three‐dimensional chemical transport model is utilized to study the transport out of the Antarctic polar vortex during the southern hemisphere spring. On average, over five consecutive years between 1993 and 1997, horizontal transport out of the vortex into the midlatitude stratosphere is smaller than vertical transport into the troposphere. However, there is significant interannual variability in the magnitude of mass exchange, which is related to year‐to‐year fluctuations in planetary wave activity. In 1994 the net loss of the vortex tracer mass in September is similar to that in October. However, the relative mass flux entering the midlatitude stratosphere and the troposphere differ between the two months. The ratio of horizontal transport out of the vortex to vertical transport into the troposphere is about 3:7 in September and 5:5 in October, indicating the higher permeability of the vortex in October compared to September. The September mass flux into the troposphere is larger than in October, consistent with the fact that stronger diabatic cooling occurs in September than October over Antarctica. The estimated ozone change at southern midlatitudes due to the intrusion of ozone‐depleted air from high latitudes during September–October 1994 is about −0.44% per decade, which could contribute up to 10% of observed ozone decline at southern midlatitudes in spring. This amount is an underestimate of the dilution effect from high latitudes during the spring season, as it does not include the vortex breakup in late spring.
  • Item
    Thumbnail Image
    Diurnal temperature range as an index of global climate change during the twentieth century
    Braganza, Karl ; Karoly, David J. ; Arblaster, J. M. (American Geophysical Union, 2004)
    The usefulness of global-average diurnal temperature range (DTR) as an index of climate change and variability is evaluated using observations and climate model simulations representing unforced climate variability and anthropogenic climate change. On decadal timescales, modelled and observed intrinsic variability of DTR compare well and are independent of variations in global mean temperature. Observed reductions in DTR over the last century are large and unlikely to be due to natural variability alone. Comparison of observed and anthropogenic-forced model changes in DTR over the last 50 years show much less reduction in DTR in the model simulations due to greater warming of maximum temperatures in the models than observed. This difference is likely attributed to increases in cloud cover that are observed over the same period and are absent in model simulations.