School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 29
  • Item
    Thumbnail Image
    Observed Relationships Between Sudden Stratospheric Warmings and European Climate Extremes
    King, AD ; Butler, AH ; Jucker, M ; Earl, NO ; Rudeva, I (AMER GEOPHYSICAL UNION, 2019-12-27)
    Abstract Sudden stratospheric warmings (SSWs) have been linked with anomalously cold temperatures at the surface in the middle to high latitudes of the Northern Hemisphere as climatological westerly winds in the stratosphere tend to weaken and turn easterly. However, previous studies have largely relied on reanalyses and model simulations to infer the role of SSWs on surface climate and SSW relationships with extremes have not been fully analyzed. Here, we use observed daily gridded temperature and precipitation data over Europe to comprehensively examine the response of climate extremes to the occurrence of SSWs. We show that for much of Scandinavia, winters with SSWs are on average at least 1 °C cooler, but the coldest day and night of winter is on average at least 2 °C colder than in non‐SSW winters. Anomalously high pressure over Scandinavia reduces precipitation on the northern Atlantic coast but increases overall rainfall and the number of wet days in southern Europe. In the 60 days after SSWs, cold extremes are more intense over Scandinavia with anomalously high pressure and drier conditions prevailing. Over southern Europe there is a tendency toward lower pressure, increased precipitation and more wet days. The surface response in cold temperature extremes over northwest Europe to the 2018 SSW was stronger than observed for any SSW during 1979–2016. Our analysis shows that SSWs have an effect not only on mean climate but also extremes over much of Europe. Only with carefully designed analyses are the relationships between SSWs and climate means and extremes detectable above synoptic‐scale variability.
  • Item
    No Preview Available
    The Australian Northwest Cloudband: Climatology, Mechanisms, and Association with Precipitation
    Reid, KJ ; Simmonds, I ; Vincent, CL ; King, AD (AMER METEOROLOGICAL SOC, 2019-10-01)
    Australian northwest cloudbands (NWCBs) are continental-scale bands of continuous cloud that stretch from northwest to southeast Australia. In earlier studies, where the characteristics of NWCBs and their relationship with precipitation were identified from satellite imagery, there was considerable uncertainty in the results due to limited quality and availability of data. The present study identifies NWCBs from 31 years of satellite data using a pattern-matching algorithm. This new climatology is the longest record based entirely on observations. Our findings include a strong annual cycle in NWCB frequency, with a summer maximum and winter minimum, and a statistically significant increase in annual NWCB days over the period 1984–2014. Physical mechanisms responsible for NWCB occurrences are explored to determine whether there is a fundamental difference between summer and winter NWCBs as hypothesized in earlier studies. Composite analyses are used to reveal that a key difference between these is their genesis mechanisms. Whereas summer NWCBs are triggered by cyclonic disturbances, winter NWCBs tend to form when meridional sea surface temperature gradients trigger baroclinic instability. It was also found that while precipitation is enhanced over parts of Australia during a cloudband day, it is reduced in other regions. During a cloudband day, precipitation extremes are more likely over northwest, central, and southeast Australia, while the probability of extreme precipitation decreases in northeast and southwest Australia. Additionally, cold fronts and NWCBs can interact, leading to enhanced rainfall over Australia.
  • Item
    Thumbnail Image
    The drivers of nonlinear local temperature change under global warming
    King, AD (IOP PUBLISHING LTD, 2019-06-01)
    How the pattern of the Earth’s surface warming will change under global warming represents a fundamental question for our understanding of the climate system with implications for regional projections. Despite the importance of this problem there have been few analyses of nonlinear local temperature change as a function of global warming. Individual climate models project nonlinearities, but drivers of nonlinear local change are poorly understood. Here, I present a framework for the identification and quantification of local nonlinearities using a time-slice analysis of a multi-model ensemble. Accelerated local warming is more likely over land than ocean per unit global warming. By examining changes across the model ensemble, I show that models that exhibit summertime drying over mid-latitude land regions, such as in central Europe, tend to also project locally accelerated warming relative to global warming, and vice versa. A case study illustrating some uses of this framework for nonlinearity identification and analysis is presented for north-eastern Australia. In this region, model nonlinear warming in summertime is strongly connected to changes in precipitation, incoming shortwave radiation, and evaporative fraction. In north-eastern Australia, model nonlinearity is also connected to projections for El Niño. Uncertainty in nonlinear local warming patterns contributes to the spread in regional climate projections, so attempts to constrain projections are explored. This study provides a framework for the identification of local temperature nonlinearities as a function of global warming and analysis of associated drivers under prescribed global warming levels.
  • Item
    No Preview Available
    THE ROLE OF NATURAL VARIABILITY AND ANTHROPOGENIC CLIMATE CHANGE IN THE 2017/18 TASMAN SEA MARINE HEATWAVE
    Perkins-Kirkpatrick, SE ; King, AD ; Cougnon, EA ; Grose, MR ; Oliver, ECJ ; Holbrook, NJ ; Lewis, SC ; Pourasghar, F (AMER METEOROLOGICAL SOC, 2019-01)
  • Item
    Thumbnail Image
    Seasonal dependence of rainfall extremes in and around Jakarta, Indonesia
    Lestari, S ; King, A ; Vincent, C ; Karoly, D ; Protat, A (Elsevier, 2019)
    This study investigates the interannual, seasonal, and intraseasonal variation in rainfall extremes (REs) in Jakarta and surroundings. We used datasets of daily rainfall at three sites at coastal, inland and mountainous environments during 1974–2016 (42 years), Sea Surface Temperature, 850-hPa zonal and meridional winds, and Outgoing Longwave Radiation during 1979–2016 (37 years). The results show that intensity and frequency of REs, and their relative contribution to the total rainfall, have strong relationships with the Indian Ocean Dipole and El Niño Southern Oscillation in the dry season (Jun–Nov) but weak relationships in the wet season (Dec–May) at all sites. During active Madden-Julian Oscillation (MJO) period, the daily average rainfall and the number of RE days relative to all days show strong variation between MJO phases at all sites and the MJO signature differs between the three stations. At the coastal and inland sites, there is a less marked variation of the number of RE events relative to all days with MJO phases. Compared to lower altitudes, the high-altitude station has a greater number of RE events relative to all days in the wet season and a lower intensity of REs relative to total rainfall amount in the dry season. The results of the study suggest that the REs vary in each station due to highly localised differences in responses to large-scale conditions.
  • Item
    Thumbnail Image
    Embracing the complexity of extreme weather events when quantifying their likelihood of recurrence in a warming world
    Harrington, LJ ; Lewis, S ; Perkins-Kirkpatrick, SE ; King, AD ; Otto, FEL (Institute of Physics (IoP), 2019)
    Global-average temperatures are a powerful metric for both long-term climate change policy, and also to measure the aggregate fluctuations in weather experienced around the world. However, here we show how the consideration of anomalies in annual temperatures at the global land-average scale, particularly during extremely hot years, tends to overestimate the perceived severity of extreme heat actually felt by local communities during these events. Thus, when global-mean temperatures are used as a proxy to infer the role of climate change on the likelihood of witnessing hot years, the component of extreme event risk attributed to human influence can also be overstated. This study suggests multiple alternative approaches to characterise extreme weather events which have complex spatial signatures, each of which improve the representation of perceived experiences from the event when compared with the default approach of using area-averaged time-series. However, as the definition of an extreme event becomes more specific to the observed characteristics witnessed, changes are needed in the way researchers discuss the likelihood of witnessing ‘similar events’ with future climate change. Using the example of the 2016 hot year, we propose an alternative framework, termed the ‘Time of Maximum Similarity’, to show that events like the record-breaking annual temperatures of 2016 are most likely to be witnessed between 2010–2037, with hot years thereafter becoming significantly more severe than the heat of 2016.
  • Item
    Thumbnail Image
    Using Global and Regional Model Simulations to Understand Maritime Continent Wet-Season Rainfall Variability
    King, AD ; Vincent, CL (American Geophysical Union, 2018)
    The Maritime Continent is a densely populated area of complex topography located between the Pacific and Indian Oceans. It is an area where model skill is particularly important but also difficult to obtain. In this study we examine interannual austral summer rainfall variability in the region and the teleconnection to the El Niño–Southern Oscillation (ENSO) in observation‐based data, reanalyses, and global and regional atmosphere‐only model simulations. We show that model ability to capture interannual rainfall variability is strongly related to model skill in reproducing the ENSO teleconnection to the region, despite strong spatial variability in the ENSO‐rainfall response in coastal areas. Model ability in capturing the spatial pattern of both the midtropospheric moisture and circulation response to ENSO is a strong predictor for model performance in capturing the ENSO‐Maritime Continent rainfall teleconnection. High‐resolution regional simulations and better performing models have opposing ENSO‐rainfall teleconnections between land and sea areas.
  • Item
    Thumbnail Image
    Amplification of risks to water supply at 1.5°C and 2°C in drying climates: a case study for Melbourne, Australia
    Henley, BJ ; Peel, MC ; Nathan, R ; King, AD ; Ukkola, AM ; Karoly, DJ ; Tan, KS (IOP Publishing, 2019-08-02)
    Human-induced climate change poses a major threat to the reliable water supply in many highly populated regions. Here we combine hydrological and climate model simulations to evaluate risks to the water supply under projected shifts in the climate at the Paris Agreement warming levels. Modelling the primary surface water sources for Melbourne, Australia, we project that the risk of severe water supply shortage to the climate-dependent portion of the system increases substantially as global warming increases from 1.5 °Cto 2.0 °C. Risks are further exacerbated by increases in water demand but substantially ameliorated by supply augmentation from desalination.Wedemonstrate that reductions in precipitation, rising temperature and growth in water demand combine to substantially amplify the risk of severe water supply shortage under near-term global warming in the absence of a climate-independent supply. This risk amplification is not as apparent in assessments based on meteorological drought alone. With the diminishing opportunity of meeting the 1.5 °CParis target, our study highlights the need to accelerate greenhouse gas mitigation efforts to reduce risks to climate dependent water supply systems.
  • Item
    Thumbnail Image
    Reduced heat exposure by limiting global warming to 1.5 degrees C
    King, AD ; Donat, MG ; Lewis, SC ; Henley, BJ ; Mitchell, DM ; Stott, PA ; Fischer, EM ; Karoly, DJ (Springer Nature, 2018-07-01)
    The benefits of limiting global warming to the lower Paris Agreement target of 1.5 °C are substantial with respect to population exposure to heat, and should impel countries to strive towards greater emissions reductions.
  • Item
    Thumbnail Image
    Attributing Changing Rates of Temperature Record Breaking to Anthropogenic Influences
    King, AD (AMER GEOPHYSICAL UNION, 2017-11)
    Abstract Record‐breaking temperatures attract attention from the media, so understanding how and why the rate of record breaking is changing may be useful in communicating the effects of climate change. A simple methodology designed for estimating the anthropogenic influence on rates of record breaking in a given time series is proposed here. The frequency of hot and cold record‐breaking temperature occurrences is shown to be changing due to the anthropogenic influence on the climate. Using ensembles of model simulations with and without human‐induced forcings, it is demonstrated that the effect of climate change on global record‐breaking temperatures can be detected as far back as the 1930s. On local scales, a climate change signal is detected more recently at most locations. The anthropogenic influence on the increased occurrence of hot record‐breaking temperatures is clearer than it is for the decreased occurrence of cold records. The approach proposed here could be applied in rapid attribution studies of record extremes to quantify the influence of climate change on the rate of record breaking in addition to the climate anomaly being studied. This application is demonstrated for the global temperature record of 2016 and the Central England temperature record in 2014.