School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 72
  • Item
    No Preview Available
    Use of 16S rRNA gene based clone libraries to assess microbial communities potentially involved in anaerobic methane oxidation in a Mediterranean cold seep
    Heijs, SK ; Haese, RR ; van der Wielen, PWJJ ; Forney, LJ ; van Elsas, JD (SPRINGER, 2007-04)
    This study provides data on the diversities of bacterial and archaeal communities in an active methane seep at the Kazan mud volcano in the deep Eastern Mediterranean sea. Layers of varying depths in the Kazan sediments were investigated in terms of (1) chemical parameters and (2) DNA-based microbial population structures. The latter was accomplished by analyzing the sequences of directly amplified 16S rRNA genes, resulting in the phylogenetic analysis of the prokaryotic communities. Sequences of organisms potentially associated with processes such as anaerobic methane oxidation and sulfate reduction were thus identified. Overall, the sediment layers revealed the presence of sequences of quite diverse bacterial and archaeal communities, which varied considerably with depth. Dominant types revealed in these communities are known as key organisms involved in the following processes: (1) anaerobic methane oxidation and sulfate reduction, (2) sulfide oxidation, and (3) a range of (aerobic) heterotrophic processes. In the communities in the lowest sediment layer sampled (22-34 cm), sulfate-reducing bacteria and archaea of the ANME-2 cluster (likely involved in anaerobic methane oxidation) were prevalent, whereas heterotrophic organisms abounded in the top sediment layer (0-6 cm). Communities in the middle layer (6-22 cm) contained organisms that could be linked to either of the aforementioned processes. We discuss how these phylogeny (sequence)-based findings can support the ongoing molecular work aimed at unraveling both the functioning and the functional diversities of the communities under study.
  • Item
    No Preview Available
    Revised stratigraphy of the Blanchetown Clay, Murray Basin: age constraints on the evolution of paleo Lake Bungunnia
    McLaren, S ; Wallace, MW ; Pillans, BJ ; Gallagher, SJ ; Miranda, JA ; Warne, MT (TAYLOR & FRANCIS LTD, 2009)
  • Item
    No Preview Available
    Distribution of Palaeozoic reworking in the Western Arunta Region and northwestern Amadeus Basin from 40Ar/39Ar thermochronology: implications for the evolution of intracratonic basins
    McLaren, S ; Sandiford, M ; Dunlap, WJ ; Scrimgeour, I ; Close, D ; Edgoose, C (WILEY, 2009-06)
    ABSTRACT The Centralian Superbasin in central Australia is one of the most extensive intracratonic basins known from a stable continental setting, but the factors controlling its formation and subsequent structural dismemberment continue to be debated. Argon thermochronology of K‐feldspar, sensitive to a broad range of temperatures (∼150 to 350 °C), provides evidence for the former extent and thickness of the superbasin and points toward thickening of the superbasin succession over the now exhumed Arunta Region basement. These data suggest that before Palaeozoic tectonism, there was around 5–6 km of sediment present over what is now the northern margin of the Amadeus Basin, and, if the Centralian superbasin was continuous, between 6 and 8 km over the now exhumed basement.40Ar/39Ar data from neoformed fine‐grained muscovite suggests that Palaeozoic deformation and new mineral growth occurred during the earliest compressional phase of the Alice Springs Orogeny (ASO) (440–375 Ma) and was restricted to shear zones. Significantly, several shear zones active during the late Mesoproterozoic Teapot Orogeny were not reactivated at this time, suggesting that the presence of pre‐existing structures was not the only controlling factor in localizing Palaeozoic deformation. A range of Palaeozoic ages of 440–300 Ma from samples within and external to shear zones points to thermal disturbance from at least the early Silurian through until the late Carboniferous and suggests final cooling and exhumation of the terrane in this interval. The absence of evidence for active deformation and/or new mineral growth in the late stages of the ASO (350–300 Ma) is consistent with a change in orogenic dynamics from thick‐skinned regionally extensive deformation to a more restricted localized high‐geothermal gradient event.
  • Item
    No Preview Available
    Age constraints on Oligocene sedimentation in the Torquay Basin, southeastern Australia
    McLaren, S ; Wallace, MW ; Gallagher, SJ ; Dickinson, JA ; McAllister, A (TAYLOR & FRANCIS LTD, 2009)
  • Item
  • Item
  • Item
    No Preview Available
    Lessons for East Timor from Africa's recent land reforms
    BATTERBURY, S ; Longbottom, ( 2007)
  • Item
    No Preview Available
    Simultaneous nested modeling from the synoptic scale to the LES scale for wind energy applications
    Liu, Y ; Warner, T ; Liu, Y ; Vincent, C ; Wu, W ; Mahoney, B ; Swerdlin, S ; Parks, K ; Boehnert, J (ELSEVIER, 2011-04)
  • Item
    Thumbnail Image
    Non-stationarity in daily and sub-daily intense rainfall – Part 2: regional assessment for sites in south-east Australia
    Jakob, D. ; Karoly, D. J. ; Seed, A. (Copernicus Publications on behalf of the European Geoscience Union, 2011)
    Using data for a common period (1976–2005) for a set of 31 sites located in south-east Australia, variations in frequency and magnitude of intense rainfall events across durations from 6 min to 72 h were assessed. This study was driven by a need to clarify how variations in climate might affect intense rainfall and the potential for flooding. Sub-daily durations are of particular interest for urban applications. Worldwide, few such observation-based studies exist, which is mainly due to limitations in data. Analysis of seasonality in frequency and magnitude of events revealed considerable variation across the set of sites, implying different dominating rainfall-producing mechanisms and/or interactions with local topography. Both these factors are relevant when assessing the potential effects of climate variations on intense rainfall events. The set of sites was therefore split into groups ("north cluster" and "south cluster") according to the characteristics of intense rainfall events. There is a strong polarisation in the nature of changes found for the north cluster and south cluster. While sites in the north cluster typically exhibit decrease in frequency of events, particularly in autumn and at durations of 1 h and longer; sites in the south cluster experience an increase in frequency of events, particularly for summer and sub-hourly durations. Non-stationarity found in historical records has the potential to significantly affect design rainfall estimates. An assessment of quantile estimates derived using a standard regionalisation technique and periods representative of record lengths available for practical applications show that such estimates may not be representative of long-term conditions, so alternative approaches need to be considered, particularly where short records are concerned. Additional rainfall information, in particular radar data, could be used for an in-depth spatial analysis of intense rainfall events.
  • Item
    Thumbnail Image
    Non-stationarity in daily and sub-daily intense rainfall – Part 1: Sydney, Australia
    Jakob, D. ; Karoly, D. J. ; Seed, A. (Copernicus Publications on behalf of the European Geoscience Union, 2011)
    This study was driven by a need to clarify how variations in climate might affect intense rainfall and the potential for flooding. Sub-daily durations are of particular interest for urban applications. Worldwide, few such observation-based studies exist, which is mainly due to limitations in data. While there are still large discrepancies between precipitation data sets from observations and models, both show that there is a tendency for moist regions to become wetter and for dry regions to become drier. However, changes in extreme conditions may show the opposite sign to those in average conditions. Where changes in observed intense precipitation have been studied, this has typically been for daily durations or longer. The purpose of this two-part study is to examine daily and sub-daily rainfall extremes for evidence of non-stationarity. Here the problem was addressed by supplementing one long record (Part 1) by a set of shorter records for a 30-yr concurrent period (Part 2). Variations in frequency and magnitude of rainfall extremes across durations from 6 min to 72 h were assessed using data from sites in the south-east of Australia. For the analyses presented in this paper, a peaks-over-threshold approach was chosen since it allows investigating changes in frequency as well as magnitude. Non-parametric approaches were used to assess changes in frequency, magnitude, and quantile estimates as well as the statistical significance of changes for one station (Sydney Observatory Hill) for the period 1921 to 2005. Deviations from the long-term average vary with season, duration, and threshold. The effects of climate variations are most readily detected for the highest thresholds. Deviations from the long-term average tend to be larger for frequencies than for magnitudes, and changes in frequency and magnitude may have opposite signs. Investigations presented in this paper show that variations in frequency and magnitude of events at daily durations are a poor indicator of changes at sub-daily durations. Studies like the one presented here should be undertaken for other regions to allow the identification of regions with significant increase/decrease in intense rainfall, whether there are common features with regards to duration and season exhibiting most significant changes (which in turn could lead to establishing a theoretical framework), and assist in validation of projections of rainfall extremes.