School of Earth Sciences - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Precipitation Simulations Using WRF as a Nested Regional Climate Model
    Bukovsky, MS ; Karoly, DJ (AMER METEOROLOGICAL SOC, 2009-10)
    Abstract This note examines the sensitivity of simulated U.S. warm-season precipitation in the Weather Research and Forecasting model (WRF), used as a nested regional climate model, to variations in model setup. Numerous options have been tested and a few of the more interesting and unexpected sensitivities are documented here. Specifically, the impacts of changes in convective and land surface parameterizations, nest feedbacks, sea surface temperature, and WRF version on mean precipitation are evaluated in 4-month-long simulations. Running the model over an entire season has brought to light some issues that are not otherwise apparent in shorter, weather forecast–type simulations, emphasizing the need for careful scrutiny of output from any model simulation. After substantial testing, a reasonable model setup was found that produced a definite improvement in the climatological characteristics of precipitation over that from the National Centers for Environmental Prediction–National Center for Atmospheric Research global reanalysis, the dataset used for WRF initial and boundary conditions in this analysis.
  • Item
    Thumbnail Image
    A regional modeling study of climate change impacts on warm-season precipitation in the Central United States
    Bukovsky, Melissa S. ; Karoly, David J. (American Meteorological Society, 2011)
    In this study, the Weather Research and Forecasting (WRF) model is employed as a nested regional climate model to dynamically downscale output from the National Center for Atmospheric Research’s (NCAR’s) Community Climate SystemModel (CCSM) version 3 and the National Centers for Environmental Prediction (NCEP)–NCARglobal reanalysis (NNRP). The latter is used for verification of late-twentieth-century climate simulations from the WRF.