School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    No Preview Available
    Overexpression of Lmo2 initiates T-lymphoblastic leukemia via impaired thymocyte competition
    Abdulla, HDD ; Alserihi, R ; Flensburg, C ; Abeysekera, W ; Luo, M-X ; Gray, DHD ; Liu, X ; Smyth, GKK ; Alexander, WSS ; Majewski, IJJ ; McCormack, MPP (ROCKEFELLER UNIV PRESS, 2023-03-15)
    Cell competition has recently emerged as an important tumor suppressor mechanism in the thymus that inhibits autonomous thymic maintenance. Here, we show that the oncogenic transcription factor Lmo2 causes autonomous thymic maintenance in transgenic mice by inhibiting early T cell differentiation. This autonomous thymic maintenance results in the development of self-renewing preleukemic stem cells (pre-LSCs) and subsequent leukemogenesis, both of which are profoundly inhibited by restoration of thymic competition or expression of the antiapoptotic factor BCL2. Genomic analyses revealed the presence of Notch1 mutations in pre-LSCs before subsequent loss of tumor suppressors promotes the transition to overt leukemogenesis. These studies demonstrate a critical role for impaired cell competition in the development of pre-LSCs in a transgenic mouse model of T cell acute lymphoblastic leukemia (T-ALL), implying that this process plays a role in the ontogeny of human T-ALL.
  • Item
    Thumbnail Image
    A non-canonical function of Ezh2 preserves immune homeostasis
    Vasanthakumar, A ; Xu, D ; Lun, ATL ; Kueh, AJ ; van Gisbergen, KPJM ; Iannarella, N ; Li, X ; Yu, L ; Wang, D ; Williams, BRG ; Lee, SCW ; Majewski, IJ ; Godfrey, DI ; Smyth, GK ; Alexander, WS ; Herold, MJ ; Kallies, A ; Nutt, SL ; Allan, RS (WILEY, 2017-04)
    Enhancer of zeste 2 (Ezh2) mainly methylates lysine 27 of histone-H3 (H3K27me3) as part of the polycomb repressive complex 2 (PRC2) together with Suz12 and Eed. However, Ezh2 can also modify non-histone substrates, although it is unclear whether this mechanism has a role during development. Here, we present evidence for a chromatin-independent role of Ezh2 during T-cell development and immune homeostasis. T-cell-specific depletion of Ezh2 induces a pronounced expansion of natural killer T (NKT) cells, although Ezh2-deficient T cells maintain normal levels of H3K27me3. In contrast, removal of Suz12 or Eed destabilizes canonical PRC2 function and ablates NKT cell development completely. We further show that Ezh2 directly methylates the NKT cell lineage defining transcription factor PLZF, leading to its ubiquitination and subsequent degradation. Sustained PLZF expression in Ezh2-deficient mice is associated with the expansion of a subset of NKT cells that cause immune perturbation. Taken together, we have identified a chromatin-independent function of Ezh2 that impacts on the development of the immune system.
  • Item
    Thumbnail Image
    Canonical PRC2 function is essential for mammary gland development and affects chromatin compaction in mammary organoids
    Michalak, EM ; Milevskiy, MJG ; Joyce, RM ; Dekkers, JF ; Jamieson, PR ; Pal, B ; Dawson, CA ; Hu, Y ; Orkin, SH ; Alexander, WS ; Lindeman, GJ ; Smyth, GK ; Visvader, JE ; Rawlins, E (PUBLIC LIBRARY SCIENCE, 2018-08)
    Distinct transcriptional states are maintained through organization of chromatin, resulting from the sum of numerous repressive and active histone modifications, into tightly packaged heterochromatin versus more accessible euchromatin. Polycomb repressive complex 2 (PRC2) is the main mammalian complex responsible for histone 3 lysine 27 trimethylation (H3K27me3) and is integral to chromatin organization. Using in vitro and in vivo studies, we show that deletion of Suz12, a core component of all PRC2 complexes, results in loss of H3K27me3 and H3K27 dimethylation (H3K27me2), completely blocks normal mammary gland development, and profoundly curtails progenitor activity in 3D organoid cultures. Through the application of mammary organoids to bypass the severe phenotype associated with Suz12 loss in vivo, we have explored gene expression and chromatin structure in wild-type and Suz12-deleted basal-derived organoids. Analysis of organoids led to the identification of lineage-specific changes in gene expression and chromatin structure, inferring cell type-specific PRC2-mediated gene silencing of the chromatin state. These expression changes were accompanied by cell cycle arrest but not lineage infidelity. Together, these data indicate that canonical PRC2 function is essential for development of the mammary gland through the repression of alternate transcription programs and maintenance of chromatin states.
  • Item
    Thumbnail Image
    Polycomb repressive complex 2 (PRC2) restricts hematopoietic stem cell activity
    Majewski, IJ ; Blewitt, ME ; de Graaf, CA ; McManus, EJ ; Bahlo, M ; Hilton, AA ; Hyland, CD ; Smyth, GK ; Corbin, JE ; Metcalf, D ; Alexander, WS ; Hilton, DJ ; Goodell, MA (PUBLIC LIBRARY SCIENCE, 2008-04)
    Polycomb group proteins are transcriptional repressors that play a central role in the establishment and maintenance of gene expression patterns during development. Using mice with an N-ethyl-N-nitrosourea (ENU)-induced mutation in Suppressor of Zeste 12 (Suz12), a core component of Polycomb Repressive Complex 2 (PRC2), we show here that loss of Suz12 function enhances hematopoietic stem cell (HSC) activity. In addition to these effects on a wild-type genetic background, mutations in Suz12 are sufficient to ameliorate the stem cell defect and thrombocytopenia present in mice that lack the thrombopoietin receptor (c-Mpl). To investigate the molecular targets of the PRC2 complex in the HSC compartment, we examined changes in global patterns of gene expression in cells deficient in Suz12. We identified a distinct set of genes that are regulated by Suz12 in hematopoietic cells, including eight genes that appear to be highly responsive to PRC2 function within this compartment. These data suggest that PRC2 is required to maintain a specific gene expression pattern in hematopoiesis that is indispensable to normal stem cell function.
  • Item
    No Preview Available
    Acute myeloid leukemia requires Hhex to enable PRC2-mediated epigenetic repression of Cdkn2a
    Shields, BJ ; Jackson, JT ; Metcalf, D ; Shi, W ; Huang, Q ; Garnham, AL ; Glaser, SP ; Beck, D ; Pimanda, JE ; Bogue, CW ; Smyth, GK ; Alexander, WS ; McCormack, MP (COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT, 2016-01-01)
    Unlike clustered HOX genes, the role of nonclustered homeobox gene family members in hematopoiesis and leukemogenesis has not been extensively studied. Here we found that the hematopoietically expressed homeobox gene Hhex is overexpressed in acute myeloid leukemia (AML) and is essential for the initiation and propagation of MLL-ENL-induced AML but dispensable for normal myelopoiesis, indicating a specific requirement for Hhex for leukemic growth. Loss of Hhex leads to expression of the Cdkn2a-encoded tumor suppressors p16(INK4a) and p19(ARF), which are required for growth arrest and myeloid differentiation following Hhex deletion. Mechanistically, we show that Hhex binds to the Cdkn2a locus and directly interacts with the Polycomb-repressive complex 2 (PRC2) to enable H3K27me3-mediated epigenetic repression. Thus, Hhex is a potential therapeutic target that is specifically required for AML stem cells to repress tumor suppressor pathways and enable continued self-renewal.