School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Construction of developmental lineage relationships in the mouse mammary gland by single-cell RNA profiling
    Pal, B ; Chen, Y ; Vaillant, F ; Jamieson, P ; Gordon, L ; Rios, AC ; Wilcox, S ; Fu, N ; Liu, KH ; Jackling, FC ; Davis, MJ ; Lindeman, GJ ; Smyth, GK ; Visvader, JE (NATURE PORTFOLIO, 2017-11-20)
    The mammary epithelium comprises two primary cellular lineages, but the degree of heterogeneity within these compartments and their lineage relationships during development remain an open question. Here we report single-cell RNA profiling of mouse mammary epithelial cells spanning four developmental stages in the post-natal gland. Notably, the epithelium undergoes a large-scale shift in gene expression from a relatively homogeneous basal-like program in pre-puberty to distinct lineage-restricted programs in puberty. Interrogation of single-cell transcriptomes reveals different levels of diversity within the luminal and basal compartments, and identifies an early progenitor subset marked by CD55. Moreover, we uncover a luminal transit population and a rare mixed-lineage cluster amongst basal cells in the adult mammary gland. Together these findings point to a developmental hierarchy in which a basal-like gene expression program prevails in the early post-natal gland prior to the specification of distinct lineage signatures, and the presence of cellular intermediates that may serve as transit or lineage-primed cells.
  • Item
    Thumbnail Image
    Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation
    McCarthy, DJ ; Chen, Y ; Smyth, GK (OXFORD UNIV PRESS, 2012-05)
    A flexible statistical framework is developed for the analysis of read counts from RNA-Seq gene expression studies. It provides the ability to analyse complex experiments involving multiple treatment conditions and blocking variables while still taking full account of biological variation. Biological variation between RNA samples is estimated separately from the technical variation associated with sequencing technologies. Novel empirical Bayes methods allow each gene to have its own specific variability, even when there are relatively few biological replicates from which to estimate such variability. The pipeline is implemented in the edgeR package of the Bioconductor project. A case study analysis of carcinoma data demonstrates the ability of generalized linear model methods (GLMs) to detect differential expression in a paired design, and even to detect tumour-specific expression changes. The case study demonstrates the need to allow for gene-specific variability, rather than assuming a common dispersion across genes or a fixed relationship between abundance and variability. Genewise dispersions de-prioritize genes with inconsistent results and allow the main analysis to focus on changes that are consistent between biological replicates. Parallel computational approaches are developed to make non-linear model fitting faster and more reliable, making the application of GLMs to genomic data more convenient and practical. Simulations demonstrate the ability of adjusted profile likelihood estimators to return accurate estimators of biological variability in complex situations. When variation is gene-specific, empirical Bayes estimators provide an advantageous compromise between the extremes of assuming common dispersion or separate genewise dispersion. The methods developed here can also be applied to count data arising from DNA-Seq applications, including ChIP-Seq for epigenetic marks and DNA methylation analyses.
  • Item
    Thumbnail Image
    Integration of microRNA signatures of distinct mammary epithelial cell types with their gene expression and epigenetic portraits
    Pal, B ; Chen, Y ; Bert, A ; Hu, Y ; Sheridan, JM ; Beck, T ; Shi, W ; Satterley, K ; Jamieson, P ; Goodall, GJ ; Lindeman, GJ ; Smyth, GK ; Visvader, JE (BMC, 2015-06-18)
    INTRODUCTION: MicroRNAs (miRNAs) have been implicated in governing lineage specification and differentiation in multiple organs; however, little is known about their specific roles in mammopoiesis. We have determined the global miRNA expression profiles of functionally distinct epithelial subpopulations in mouse and human mammary tissue, and compared these to their cognate transcriptomes and epigenomes. Finally, the human miRNA signatures were used to interrogate the different subtypes of breast cancer, with a view to determining miRNA networks deregulated during oncogenesis. METHODS: RNA from sorted mouse and human mammary cell subpopulations was subjected to miRNA expression analysis using the TaqMan MicroRNA Array. Differentially expressed (DE) miRNAs were correlated with gene expression and histone methylation profiles. Analysis of miRNA signatures of the intrinsic subtypes of breast cancer in The Cancer Genome Atlas (TCGA) database versus those of normal human epithelial subpopulations was performed. RESULTS: Unique miRNA signatures characterized each subset (mammary stem cell (MaSC)/basal, luminal progenitor, mature luminal, stromal), with a high degree of conservation across species. Comparison of miRNA and transcriptome profiles for the epithelial subtypes revealed an inverse relationship and pinpointed key developmental genes. Interestingly, expression of the primate-specific miRNA cluster (19q13.4) was found to be restricted to the MaSC/basal subset. Comparative analysis of miRNA signatures with H3 lysine modification maps of the different epithelial subsets revealed a tight correlation between active or repressive marks for the top DE miRNAs, including derepression of miRNAs in Ezh2-deficient cellular subsets. Interrogation of TCGA-identified miRNA profiles with the miRNA signatures of different human subsets revealed specific relationships. CONCLUSIONS: The derivation of global miRNA expression profiles for the different mammary subpopulations provides a comprehensive resource for understanding the interplay between miRNA networks and target gene expression. These data have highlighted lineage-specific miRNAs and potential miRNA-mRNA networks, some of which are disrupted in neoplasia. Furthermore, our findings suggest that key developmental miRNAs are regulated by global changes in histone modification, thus linking the mammary epigenome with genome-wide changes in the expression of genes and miRNAs. Comparative miRNA signature analyses between normal breast epithelial cells and breast tumors confirmed an important linkage between luminal progenitor cells and basal-like tumors.
  • Item
    Thumbnail Image
    voom: precision weights unlock linear model analysis tools for RNA-seq read counts
    Law, CW ; Chen, Y ; Shi, W ; Smyth, GK (BMC, 2014)
    New normal linear modeling strategies are presented for analyzing read counts from RNA-seq experiments. The voom method estimates the mean-variance relationship of the log-counts, generates a precision weight for each observation and enters these into the limma empirical Bayes analysis pipeline. This opens access for RNA-seq analysts to a large body of methodology developed for microarrays. Simulation studies show that voom performs as well or better than count-based RNA-seq methods even when the data are generated according to the assumptions of the earlier methods. Two case studies illustrate the use of linear modeling and gene set testing methods.