School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Unpaired data empowers association tests
    Gong, M ; Liu, P ; Sciurba, FC ; Stojanov, P ; Tao, D ; Tseng, GC ; Zhang, K ; Batmanghelich, K ; Alfonso, V (OXFORD UNIV PRESS, 2021-03-15)
    MOTIVATION: There is growing interest in the biomedical research community to incorporate retrospective data, available in healthcare systems, to shed light on associations between different biomarkers. Understanding the association between various types of biomedical data, such as genetic, blood biomarkers, imaging, etc. can provide a holistic understanding of human diseases. To formally test a hypothesized association between two types of data in Electronic Health Records (EHRs), one requires a substantial sample size with both data modalities to achieve a reasonable power. Current association test methods only allow using data from individuals who have both data modalities. Hence, researchers cannot take advantage of much larger EHR samples that includes individuals with at least one of the data types, which limits the power of the association test. RESULTS: We present a new method called the Semi-paired Association Test (SAT) that makes use of both paired and unpaired data. In contrast to classical approaches, incorporating unpaired data allows SAT to produce better control of false discovery and to improve the power of the association test. We study the properties of the new test theoretically and empirically, through a series of simulations and by applying our method on real studies in the context of Chronic Obstructive Pulmonary Disease. We are able to identify an association between the high-dimensional characterization of Computed Tomography chest images and several blood biomarkers as well as the expression of dozens of genes involved in the immune system. AVAILABILITY AND IMPLEMENTATION: Code is available on https://github.com/batmanlab/Semi-paired-Association-Test. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
  • Item
    Thumbnail Image
    Improving clinical disease subtyping and future events prediction through a chest CT-based deep learning approach
    Singla, S ; Gong, M ; Riley, C ; Sciurba, F ; Batmanghelich, K (WILEY, 2021-03)
    PURPOSE: To develop and evaluate a deep learning (DL) approach to extract rich information from high-resolution computed tomography (HRCT) of patients with chronic obstructive pulmonary disease (COPD). METHODS: We develop a DL-based model to learn a compact representation of a subject, which is predictive of COPD physiologic severity and other outcomes. Our DL model learned: (a) to extract informative regional image features from HRCT; (b) to adaptively weight these features and form an aggregate patient representation; and finally, (c) to predict several COPD outcomes. The adaptive weights correspond to the regional lung contribution to the disease. We evaluate the model on 10 300 participants from the COPDGene cohort. RESULTS: Our model was strongly predictive of spirometric obstruction ( r 2  =  0.67) and grouped 65.4% of subjects correctly and 89.1% within one stage of their GOLD severity stage. Our model achieved an accuracy of 41.7% and 52.8% in stratifying the population-based on centrilobular (5-grade) and paraseptal (3-grade) emphysema severity score, respectively. For predicting future exacerbation, combining subjects' representations from our model with their past exacerbation histories achieved an accuracy of 80.8% (area under the ROC curve of 0.73). For all-cause mortality, in Cox regression analysis, we outperformed the BODE index improving the concordance metric (ours: 0.61 vs BODE: 0.56). CONCLUSIONS: Our model independently predicted spirometric obstruction, emphysema severity, exacerbation risk, and mortality from CT imaging alone. This method has potential applicability in both research and clinical practice.
  • Item
    Thumbnail Image
    3D-BoxSup: Positive-Unlabeled Learning of Brain Tumor Segmentation Networks From 3D Bounding Boxes.
    Xu, Y ; Gong, M ; Chen, J ; Chen, Z ; Batmanghelich, K (Frontiers Media SA, 2020)
    Accurate segmentation is an essential task when working with medical images. Recently, deep convolutional neural networks achieved a state-of-the-art performance for many segmentation benchmarks. Regardless of the network architecture, the deep learning-based segmentation methods view the segmentation problem as a supervised task that requires a relatively large number of annotated images. Acquiring a large number of annotated medical images is time consuming, and high-quality segmented images (i.e., strong labels) crafted by human experts are expensive. In this paper, we have proposed a method that achieves competitive accuracy from a "weakly annotated" image where the weak annotation is obtained via a 3D bounding box denoting an object of interest. Our method, called "3D-BoxSup," employs a positive-unlabeled learning framework to learn segmentation masks from 3D bounding boxes. Specially, we consider the pixels outside of the bounding box as positively labeled data and the pixels inside the bounding box as unlabeled data. Our method can suppress the negative effects of pixels residing between the true segmentation mask and the 3D bounding box and produce accurate segmentation masks. We applied our method to segment a brain tumor. The experimental results on the BraTS 2017 dataset (Menze et al., 2015; Bakas et al., 2017a,b,c) have demonstrated the effectiveness of our method.
  • Item
    No Preview Available
    Likelihood-Free Overcomplete ICA and Applications In Causal Discovery
    Chenwei, DING ; Gong, M ; Zhang, K ; Tao, D ; Wallach, H ; Larochelle, H ; Beygelzimer, A ; d'Alche-Buc, F ; Fox, E ; Garnett, R (The Neural Information Processing Systems Foundation, 2020)
    Causal discovery witnessed significant progress over the past decades. In particular, many recent causal discovery methods make use of independent, non-Gaussian noise to achieve identifiability of the causal models. Existence of hidden direct common causes, or confounders, generally makes causal discovery more difficult; whenever they are present, the corresponding causal discovery algorithms can be seen as extensions of overcomplete independent component analysis (OICA). However, existing OICA algorithms usually make strong parametric assumptions on the distribution of independent components, which may be violated on real data, leading to sub-optimal or even wrong solutions. In addition, existing OICA algorithms rely on the Expectation Maximization (EM) procedure that requires computationally expensive inference of the posterior distribution of independent components. To tackle these problems, we present a Likelihood-Free Overcomplete ICA algorithm (LFOICA) that estimates the mixing matrix directly by back-propagation without any explicit assumptions on the density function of independent components. Thanks to its computational efficiency, the proposed method makes a number of causal discovery procedures much more practically feasible. For illustrative purposes, we demonstrate the computational efficiency and efficacy of our method in two causal discovery tasks on both synthetic and real data.
  • Item
    No Preview Available
    Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering
    Huang, B ; Zhang, K ; Xie, P ; Gong, M ; Xing, EP ; Glymour, C ; Wallach, H ; Larochelle, H ; Beygelzimer, A ; d'Alche-Buc, F ; Fox, E ; Garnett, R (The Neural Information Processing Systems Foundation, 2020)
    State-of-the-art approaches to causal discovery usually assume a fixed underlying causal model. However, it is often the case that causal models vary across domains or subjects, due to possibly omitted factors that affect the quantitative causal effects. As a typical example, causal connectivity in the brain network has been reported to vary across individuals, with significant differences across groups of people, such as autistics and typical controls. In this paper, we develop a unified framework for causal discovery and mechanism-based group identification. In particular, we propose a specific and shared causal model (SSCM), which takes into account the variabilities of causal relations across individuals/groups and leverages their commonalities to achieve statistically reliable estimation. The learned SSCM gives the specific causal knowledge for each individual as well as the general trend over the population. In addition, the estimated model directly provides the group information of each individual. Experimental results on synthetic and real-world data demonstrate the efficacy of the proposed method.
  • Item
    Thumbnail Image
    Twin Auxilary Classifiers GAN
    Gong, M ; Xu, Y ; Li, C ; Zhang, K ; Batmanghelich, K ; Wallach, H ; Larochelle, H ; Beygelzimer, A ; d'Alche-Buc, F ; Fox, E ; Garnett, R (The Neural Information Processing Systems Foundation, 2020)
    Conditional generative models enjoy remarkable progress over the past few years. One of the popular conditional models is Auxiliary Classifier GAN (AC-GAN), which generates highly discriminative images by extending the loss function of GAN with an auxiliary classifier. However, the diversity of the generated samples by AC-GAN tends to decrease as the number of classes increases, hence limiting its power on large-scale data. In this paper, we identify the source of the low diversity issue theoretically and propose a practical solution to solve the problem. We show that the auxiliary classifier in AC-GAN imposes perfect separability, which is disadvantageous when the supports of the class distributions have significant overlap. To address the issue, we propose Twin Auxiliary Classifiers Generative Adversarial Net (TAC-GAN) that further benefits from a new player that interacts with other players (the generator and the discriminator) in GAN. Theoretically, we demonstrate that TAC-GAN can effectively minimize the divergence between the generated and real-data distributions. Extensive experimental results show that our TAC-GAN can successfully replicate the true data distributions on simulated data, and significantly improves the diversity of class-conditional image generation on real datasets.
  • Item
    No Preview Available
    Causal Discovery from Non-Identical Variable Sets
    Huang, B ; Zhang, K ; Gong, M ; Glymour, C (Association for the Advancement of Artificial Intelligence, 2020)
    A number of approaches to causal discovery assume that there are no hidden confounders and are designed to learn a fixed causal model from a single data set. Over the last decade, with closer cooperation across laboratories, we are able to accumulate more variables and data for analysis, while each lab may only measure a subset of them, due to technical constraints or to save time and cost. This raises a question of how to handle causal discovery from multiple data sets with non-identical variable sets, and at the same time, it would be interesting to see how more recorded variables can help to mitigate the confounding problem. In this paper, we propose a principled method to uniquely identify causal relationships over the integrated set of variables from multiple data sets, in linear, non-Gaussian cases. The proposed method also allows distribution shifts across data sets. Theoretically, we show that the causal structure over the integrated set of variables is identifiable under testable conditions. Furthermore, we present two types of approaches to parameter estimation: one is based on maximum likelihood, and the other is likelihood free and leverages generative adversarial nets to improve scalability of the estimation procedure. Experimental results on various synthetic and real-world data sets are presented to demonstrate the efficacy of our methods.
  • Item
    No Preview Available
    Compressed Self-Attention for Deep Metric Learning
    Ziye, C ; Gong, M ; Xu, Y ; Wang, C ; Zhang, K ; Du, B (Association for the Advancement of Artificial Intelligence, 2020)
    In this paper, we aim to enhance self-attention (SA) mechanism for deep metric learning in visual perception, by capturing richer contextual dependencies in visual data. To this end, we propose a novel module, named compressed self-attention (CSA), which significantly reduces the computation and memory cost with a neglectable decrease in accuracy with respect to the original SA mechanism, thanks to the following two characteristics: i) it only needs to compute a small number of base attention maps for a small number of base feature vectors; and ii) the output at each spatial location can be simply obtained by an adaptive weighted average of the outputs calculated from the base attention maps. The high computational efficiency of CSA enables the application to high-resolution shallow layers in convolutional neural networks with little additional cost. In addition, CSA makes it practical to further partition the feature maps into groups along the channel dimension and compute attention maps for features in each group separately, thus increasing the diversity of long-range dependencies and accordingly boosting the accuracy. We evaluate the performance of CSA via extensive experiments on two metric learning tasks: person re-identification and local descriptor learning. Qualitative and quantitative comparisons with latest methods demonstrate the significance of CSA in this topic.
  • Item
    Thumbnail Image
    Generative-Discriminative Complementary Learning
    Xu, Y ; Gong, M ; Chen, J ; Liu, T ; Zhang, K ; Batmanghelich, K (Association for the Advancement of Artificial Intelligence, 2020)
    The majority of state-of-the-art deep learning methods are discriminative approaches, which model the conditional distribution of labels given inputs features. The success of such approaches heavily depends on high-quality labeled instances, which are not easy to obtain, especially as the number of candidate classes increases. In this paper, we study the complementary learning problem. Unlike ordinary labels, complementary labels are easy to obtain because an annotator only needs to provide a yes/no answer to a randomly chosen candidate class for each instance. We propose a generative-discriminative complementary learning method that estimates the ordinary labels by modeling both the conditional (discriminative) and instance (generative) distributions. Our method, we call Complementary Conditional GAN (CCGAN), improves the accuracy of predicting ordinary labels and is able to generate high-quality instances in spite of weak supervision. In addition to the extensive empirical studies, we also theoretically show that our model can retrieve the true conditional distribution from the complementarily-labeled data.