School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 15
  • Item
    No Preview Available
    Development and Validation of an In Silico Decision Tool To Guide Optimization of Intravenous Artesunate Dosing Regimens for Severe Falciparum Malaria Patients
    Zaloumis, SG ; Whyte, JM ; Tarning, J ; Krishna, S ; McCaw, JM ; Cao, P ; White, MT ; Dini, S ; Fowkes, FJ ; Maude, RJ ; Kremsner, P ; Dondorp, A ; Price, RN ; White, NJ ; Simpson, JA (AMER SOC MICROBIOLOGY, 2021-06)
    Most deaths from severe falciparum malaria occur within 24 h of presentation to a hospital. Intravenous (i.v.) artesunate is the first-line treatment for severe falciparum malaria, but its efficacy may be compromised by delayed parasitological responses. In patients with severe malaria, the life-saving benefit of the artemisinin derivatives is their ability to clear circulating parasites rapidly, before they can sequester and obstruct the microcirculation. To evaluate the dosing of i.v. artesunate for the treatment of artemisinin-sensitive and reduced ring stage sensitivity to artemisinin severe falciparum malaria infections, Bayesian pharmacokinetic-pharmacodynamic modeling of data from 94 patients with severe malaria (80 children from Africa and 14 adults from Southeast Asia) was performed. Assuming that delayed parasite clearance reflects a loss of ring stage sensitivity to artemisinin derivatives, the median (95% credible interval) percentage of patients clearing ≥99% of parasites within 24 h (PC24≥99%) for standard (2.4 mg/kg body weight i.v. artesunate at 0 and 12 h) and simplified (4 mg/kg i.v. artesunate at 0 h) regimens was 65% (52.5% to 74.5%) versus 44% (25% to 61.5%) for adults, 62% (51.5% to 74.5%) versus 39% (20.5% to 58.5%) for larger children (≥20 kg), and 60% (48.5% to 70%) versus 36% (20% to 53.5%) for smaller children (<20 kg). The upper limit of the credible intervals for all regimens was below a PC24≥99% of 80%, a threshold achieved on average in clinical studies of severe falciparum malaria infections. In severe falciparum malaria caused by parasites with reduced ring stage susceptibility to artemisinin, parasite clearance is predicted to be slower with both the currently recommended and proposed simplified i.v. artesunate dosing regimens.
  • Item
    No Preview Available
    Development of an influenza pandemic decision support tool linking situational analytics to national response policy.
    Shearer, FM ; Moss, R ; Price, DJ ; Zarebski, AE ; Ballard, PG ; McVernon, J ; Ross, JV ; McCaw, JM (Elsevier, 2021-06-19)
    National influenza pandemic plans have evolved substantially over recent decades, as has the scientific research that underpins the advice contained within them. While the knowledge generated by many research activities has been directly incorporated into the current generation of pandemic plans, scientists and policymakers are yet to capitalise fully on the potential for near real-time analytics to formally contribute to epidemic decision-making. Theoretical studies demonstrate that it is now possible to make robust estimates of pandemic impact in the earliest stages of a pandemic using first few hundred household cohort (FFX) studies and algorithms designed specifically for analysing FFX data. Pandemic plans already recognise the importance of both situational awareness i.e., knowing pandemic impact and its key drivers, and the need for pandemic special studies and related analytic methods for estimating these drivers. An important next step is considering how information from these situational assessment activities can be integrated into the decision-making processes articulated in pandemic planning documents. Here we introduce a decision support tool that directly uses outputs from FFX algorithms to present recommendations on response options, including a quantification of uncertainty, to decision makers. We illustrate this approach using response information from within the Australian influenza pandemic plan.
  • Item
    No Preview Available
    Assessing the risk of spread of COVID-19 to the Asia Pacific region
    Shearer, F ; Walker, J ; Tellioglu, N ; McCaw, J ; McVernon, J ; Black, A ; Geard, N ( 2020)
    During the early stages of an emerging disease outbreak, governments are required to make critical decisions on how to respond appropriately, despite limited data being available to inform these decisions. Analytical risk assessment is a valuable approach to guide decision-making on travel restrictions and border measures during the early phase of an outbreak, when transmission is primarily contained within a source country. Here we introduce a modular framework for estimating the importation risk of an emerging disease when the direct travel route is restricted and the risk stems from indirect importation via intermediary countries. This was the situation for Australia in February 2020. The framework was specifically developed to assess the importation risk of COVID-19 into Australia during the early stages of the outbreak from late January to mid-February 2020. The dominant importation risk to Australia at the time of analysis was directly from China, as the only country reporting uncontained transmission. However, with travel restrictions from mainland China to Australia imposed from February 1, our framework was designed to consider the importation risk from China into Australia via potential intermediary countries in the Asia Pacific region. The framework was successfully used to contribute to the evidence base for decisions on border measures and case definitions in the Australian context during the early phase of COVID-19 emergence and is adaptable to other contexts for future outbreak response.
  • Item
    Thumbnail Image
    Modelling the impact of COVID-19 in Australia to inform transmission reducing measures and health system preparedness
    Moss, R ; Wood, J ; Brown, D ; Shearer, F ; Black, AJ ; Cheng, AC ; McCaw, JM ; McVernon, J ( 2020)

    ABSTRACT

    Background

    The ability of global health systems to cope with increasing numbers of COVID-19 cases is of major concern. In readiness for this challenge, Australia has drawn on clinical pathway models developed over many years in preparation for influenza pandemics. These models have been used to estimate health care requirements for COVID-19 patients, in the context of broader public health measures.

    Methods

    An age and risk stratified transmission model of COVID-19 infection was used to simulate an unmitigated epidemic with parameter ranges reflecting uncertainty in current estimates of transmissibility and severity. Overlaid public health measures included case isolation and quarantine of contacts, and broadly applied social distancing. Clinical presentations and patient flows through the Australian health care system were simulated, including expansion of available intensive care capacity and alternative clinical assessment pathways.

    Findings

    An unmitigated COVID-19 epidemic would dramatically exceed the capacity of the Australian health system, over a prolonged period. Case isolation and contact quarantine alone will be insufficient to constrain case presentations within a feasible level of expansion of health sector capacity. Overlaid social restrictions will need to be applied at some level over the course of the epidemic to ensure that systems do not become overwhelmed, and that essential health sector functions, including care of COVID-19 patients, can be maintained. Attention to the full pathway of clinical care is needed to ensure access to critical care.

    Interpretation

    Reducing COVID-19 morbidity and mortality will rely on a combination of measures to strengthen and extend public health and clinical capacity, along with reduction of overall infection transmission in the community. Ongoing attention to maintaining and strengthening the capacity of health care systems and workers to manage cases is needed.

    Funding

    Australian Government Department of Health Office of Health Protection, Australian Government National Health and Medical Research Council
  • Item
    Thumbnail Image
    Modelling the Effect of MUC1 on Influenza Virus Infection Kinetics and Macrophage Dynamics
    Li, K ; Cao, P ; McCaw, JM (MDPI, 2021-05)
    MUC1 belongs to the family of cell surface (cs-) mucins. Experimental evidence indicates that its presence reduces in vivo influenza viral infection severity. However, the mechanisms by which MUC1 influences viral dynamics and the host immune response are not yet well understood, limiting our ability to predict the efficacy of potential treatments that target MUC1. To address this limitation, we use available in vivo kinetic data for both virus and macrophage populations in wildtype and MUC1 knockout mice. We apply two mathematical models of within-host influenza dynamics to this data. The models differ in how they categorise the mechanisms of viral control. Both models provide evidence that MUC1 reduces the susceptibility of epithelial cells to influenza virus and regulates macrophage recruitment. Furthermore, we predict and compare some key infection-related quantities between the two mice groups. We find that MUC1 significantly reduces the basic reproduction number of viral replication as well as the number of cumulative macrophages but has little impact on the cumulative viral load. Our analyses suggest that the viral replication rate in the early stages of infection influences the kinetics of the host immune response, with consequences for infection outcomes, such as severity. We also show that MUC1 plays a strong anti-inflammatory role in the regulation of the host immune response. This study improves our understanding of the dynamic role of MUC1 against influenza infection and may support the development of novel antiviral treatments and immunomodulators that target MUC1.
  • Item
    No Preview Available
    Constructing an ethical framework for priority allocation of pandemic vaccines
    Fielding, J ; Sullivan, SG ; Beard, F ; Macartney, K ; Williams, J ; Dawson, A ; Gilbert, GL ; Massey, P ; Crooks, K ; Moss, R ; McCaw, JM ; McVernon, J (ELSEVIER SCI LTD, 2021-01-29)
    BACKGROUND: Allocation of scarce resources during a pandemic extends to the allocation of vaccines when they eventually become available. We describe a framework for priority vaccine allocation that employed a cross-disciplinary approach, guided by ethical considerations and informed by local risk assessment. METHODS: Published and grey literature was reviewed, and augmented by consultation with key informants, to collate past experience, existing guidelines and emerging strategies for pandemic vaccine deployment. Identified ethical issues and decision-making processes were also included. Concurrently, simulation modelling studies estimated the likely impacts of alternative vaccine allocation approaches. Assembled evidence was presented to a workshop of national experts in pandemic preparedness, vaccine strategy, implementation and ethics. All of this evidence was then used to generate a proposed ethical framework for vaccine priorities best suited to the Australian context. FINDINGS: Published and emerging guidance for priority pandemic vaccine distribution differed widely with respect to strategic objectives, specification of target groups, and explicit discussion of ethical considerations and decision-making processes. Flexibility in response was universally emphasised, informed by real-time assessment of the pandemic impact level, and identification of disproportionately affected groups. Model outputs aided identification of vaccine approaches most likely to achieve overarching goals in pandemics of varying transmissibility and severity. Pandemic response aims deemed most relevant for an Australian framework were: creating and maintaining trust, promoting equity, and reducing harmful outcomes. INTERPRETATION: Defining clear and ethically-defendable objectives for pandemic response in context aids development of flexible and adaptive decision support frameworks and facilitates clear communication and engagement activities.
  • Item
    Thumbnail Image
    Coronavirus Disease Model to Inform Transmission -Reducing Measures and Health System Preparedness, Australia
    Moss, R ; Wood, J ; Brown, D ; Shearer, FM ; Black, AJ ; Glass, K ; Cheng, AC ; McCaw, JM ; McVernon, J (CENTERS DISEASE CONTROL & PREVENTION, 2020-12)
    The ability of health systems to cope with coronavirus disease (COVID-19) cases is of major concern. In preparation, we used clinical pathway models to estimate healthcare requirements for COVID-19 patients in the context of broader public health measures in Australia. An age- and risk-stratified transmission model of COVID-19 demonstrated that an unmitigated epidemic would dramatically exceed the capacity of the health system of Australia over a prolonged period. Case isolation and contact quarantine alone are insufficient to constrain healthcare needs within feasible levels of expansion of health sector capacity. Overlaid social restrictions must be applied over the course of the epidemic to ensure systems do not become overwhelmed and essential health sector functions, including care of COVID-19 patients, can be maintained. Attention to the full pathway of clinical care is needed, along with ongoing strengthening of capacity.
  • Item
    Thumbnail Image
    Influencing public health policy with data-informed mathematical models of infectious diseases: Recent developments and new challenges
    Alahmadi, A ; Belet, S ; Black, A ; Cromer, D ; Flegg, JA ; House, T ; Jayasundara, P ; Keith, JM ; McCaw, JM ; Moss, R ; Ross, J ; Shearer, FM ; Sai, TTT ; Walker, J ; White, L ; Whyte, JM ; Yan, AWC ; Zarebski, AE (ELSEVIER, 2020-09)
    Modern data and computational resources, coupled with algorithmic and theoretical advances to exploit these, allow disease dynamic models to be parameterised with increasing detail and accuracy. While this enhances models' usefulness in prediction and policy, major challenges remain. In particular, lack of identifiability of a model's parameters may limit the usefulness of the model. While lack of parameter identifiability may be resolved through incorporation into an inference procedure of prior knowledge, formulating such knowledge is often difficult. Furthermore, there are practical challenges associated with acquiring data of sufficient quantity and quality. Here, we discuss recent progress on these issues.
  • Item
    Thumbnail Image
    Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
    Lydeamore, MJ ; Campbell, PT ; Price, DJ ; Wu, Y ; Marcato, AJ ; Cuningham, W ; Carapetis, JR ; Andrews, RM ; McDonald, M ; McVernon, J ; Tong, SYC ; McCaw, JM ; Kouyos, RD (Public Library of Science (PLoS), 2020-10-01)
    Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communities, Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven primarily in these settings by Group A Streptococcus (GAS) contribute substantially to the disease burden in these areas. Despite this, estimates for the force of infection, infectious period and basic reproductive ratio—all necessary for the construction of dynamic transmission models—have not been obtained. By utilising three datasets each containing longitudinal infection information on individuals, we estimate each of these epidemiologically important parameters. With an eye to future study design, we also quantify the optimal sampling intervals for obtaining information about these parameters. We verify the estimation method through a simulation estimation study, and test each dataset to ensure suitability to the estimation method. We find that the force of infection differs by population prevalence, and the infectious period is estimated to be between 12 and 20 days. We also find that optimal sampling interval depends on setting, with an optimal sampling interval between 9 and 11 days in a high prevalence setting, and 21 and 27 days for a lower prevalence setting. These estimates unlock future model-based investigations on the transmission dynamics of skin sores.
  • Item
    Thumbnail Image
    Key questions for modelling COVID-19 exit strategies
    Thompson, RN ; Hollingsworth, TD ; Isham, V ; Arribas-Bel, D ; Ashby, B ; Britton, T ; Challenor, P ; Chappell, LHK ; Clapham, H ; Cunniffe, NJ ; Dawid, AP ; Donnelly, CA ; Eggo, RM ; Funk, S ; Gilbert, N ; Glendinning, P ; Gog, JR ; Hart, WS ; Heesterbeek, H ; House, T ; Keeling, M ; Kiss, IZ ; Kretzschmar, ME ; Lloyd, AL ; McBryde, ES ; McCaw, JM ; McKinley, TJ ; Miller, JC ; Morris, M ; O'Neill, PD ; Parag, K ; Pearson, CAB ; Pellis, L ; Pulliam, JRC ; Ross, J ; Tomba, GS ; Silverman, BW ; Struchiner, CJ ; Tildesley, MJ ; Trapman, P ; Webb, CR ; Mollison, D ; Restif, O (ROYAL SOC, 2020-08-12)
    Combinations of intense non-pharmaceutical interventions (lockdowns) were introduced worldwide to reduce SARS-CoV-2 transmission. Many governments have begun to implement exit strategies that relax restrictions while attempting to control the risk of a surge in cases. Mathematical modelling has played a central role in guiding interventions, but the challenge of designing optimal exit strategies in the face of ongoing transmission is unprecedented. Here, we report discussions from the Isaac Newton Institute 'Models for an exit strategy' workshop (11-15 May 2020). A diverse community of modellers who are providing evidence to governments worldwide were asked to identify the main questions that, if answered, would allow for more accurate predictions of the effects of different exit strategies. Based on these questions, we propose a roadmap to facilitate the development of reliable models to guide exit strategies. This roadmap requires a global collaborative effort from the scientific community and policymakers, and has three parts: (i) improve estimation of key epidemiological parameters; (ii) understand sources of heterogeneity in populations; and (iii) focus on requirements for data collection, particularly in low-to-middle-income countries. This will provide important information for planning exit strategies that balance socio-economic benefits with public health.