School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    No Preview Available
    COVID-19 vaccine coverage targets to inform reopening plans in a low incidence setting
    Conway, E ; Walker, CR ; Baker, C ; Lydeamore, MJ ; Ryan, GE ; Campbell, T ; Miller, JC ; Rebuli, N ; Yeung, M ; Kabashima, G ; Geard, N ; Wood, J ; McCaw, JM ; McVernon, J ; Golding, N ; Price, DJ ; Shearer, FM (ROYAL SOC, 2023-08-30)
    Since the emergence of SARS-CoV-2 in 2019 through to mid-2021, much of the Australian population lived in a COVID-19-free environment. This followed the broadly successful implementation of a strong suppression strategy, including international border closures. With the availability of COVID-19 vaccines in early 2021, the national government sought to transition from a state of minimal incidence and strong suppression activities to one of high vaccine coverage and reduced restrictions but with still-manageable transmission. This transition is articulated in the national 're-opening' plan released in July 2021. Here, we report on the dynamic modelling study that directly informed policies within the national re-opening plan including the identification of priority age groups for vaccination, target vaccine coverage thresholds and the anticipated requirements for continued public health measures-assuming circulation of the Delta SARS-CoV-2 variant. Our findings demonstrated that adult vaccine coverage needed to be at least 60% to minimize public health and clinical impacts following the establishment of community transmission. They also supported the need for continued application of test-trace-isolate-quarantine and social measures during the vaccine roll-out phase and beyond.
  • Item
    Thumbnail Image
    COVID-19 in low-tolerance border quarantine systems: Impact of the Delta variant of SARS-CoV-2
    Zachreson, C ; Shearer, FM ; Price, DJ ; Lydeamore, MJ ; McVernon, J ; McCaw, J ; Geard, N (AMER ASSOC ADVANCEMENT SCIENCE, 2022-04)
    In controlling transmission of coronavirus disease 2019 (COVID-19), the effectiveness of border quarantine strategies is a key concern for jurisdictions in which the local prevalence of disease and immunity is low. In settings like this such as China, Australia, and New Zealand, rare outbreak events can lead to escalating epidemics and trigger the imposition of large-scale lockdown policies. Here, we develop and apply an individual-based model of COVID-19 to simulate case importation from managed quarantine under various vaccination scenarios. We then use the output of the individual-based model as input to a branching process model to assess community transmission risk. For parameters corresponding to the Delta variant, our results demonstrate that vaccination effectively counteracts the pathogen's increased infectiousness. To prevent outbreaks, heightened vaccination in border quarantine systems must be combined with mass vaccination. The ultimate success of these programs will depend sensitively on the efficacy of vaccines against viral transmission.