School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    Thumbnail Image
    On the extinction probability in models of within-host infection: the role of latency and immunity
    Yan, AWC ; Cao, P ; McCaw, JM (SPRINGER HEIDELBERG, 2016-10)
    Not every exposure to virus establishes infection in the host; instead, the small amount of initial virus could become extinct due to stochastic events. Different diseases and routes of transmission have a different average number of exposures required to establish an infection. Furthermore, the host immune response and antiviral treatment affect not only the time course of the viral load provided infection occurs, but can prevent infection altogether by increasing the extinction probability. We show that the extinction probability when there is a time-dependent immune response depends on the chosen form of the model-specifically, on the presence or absence of a delay between infection of a cell and production of virus, and the distribution of latent and infectious periods of an infected cell. We hypothesise that experimentally measuring the extinction probability when the virus is introduced at different stages of the immune response, alongside the viral load which is usually measured, will improve parameter estimates and determine the most suitable mathematical form of the model.
  • Item
    Thumbnail Image
    Investigating the Efficacy of Triple Artemisinin-Based Combination Therapies for Treating Plasmodium falciparum Malaria Patients Using Mathematical Modeling
    Dini, S ; Zaloumis, S ; Cao, P ; Price, RN ; Fowkes, FJ ; van der Pluijm, ERW ; McCaw, JM ; Simpson, JA (AMER SOC MICROBIOLOGY, 2018-11)
    The first line treatment for uncomplicated falciparum malaria is artemisinin-based combination therapy (ACT), which consists of an artemisinin derivative coadministered with a longer-acting partner drug. However, the spread of Plasmodium falciparum resistant to both artemisinin and its partner drugs poses a major global threat to malaria control activities. Novel strategies are needed to retard and reverse the spread of these resistant parasites. One such strategy is triple artemisinin-based combination therapy (TACT). We developed a mechanistic within-host mathematical model to investigate the efficacy of a TACT (dihydroartemisinin-piperaquine-mefloquine [DHA-PPQ-MQ]) for use in South-East Asia, where DHA and PPQ resistance are now increasingly prevalent. Comprehensive model simulations were used to explore the degree to which the underlying resistance influences the parasitological outcomes. The effect of MQ dosing on the efficacy of TACT was quantified at various degrees of DHA and PPQ resistance. To incorporate interactions between drugs, a novel model is presented for the combined effect of DHA-PPQ-MQ, which illustrates how the interactions can influence treatment efficacy. When combined with a standard regimen of DHA and PPQ, the administration of three 6.7-mg/kg doses of MQ was sufficient to achieve parasitological efficacy greater than that currently recommended by World Health Organization (WHO) guidelines. As a result, three 8.3-mg/kg doses of MQ, the current WHO-recommended dosing regimen for MQ, combined with DHA-PPQ, has the potential to produce high cure rates in regions where resistance to DHA-PPQ has emerged.
  • Item
    Thumbnail Image
    Modeling the dynamics of Plasmodium falciparum gametocytes in humans during malaria infection
    Cao, P ; Collins, KA ; Zaloumis, S ; Wattanakul, T ; Tarning, J ; Simpson, JA ; McCarthy, J ; McCaw, JM (eLIFE SCIENCES PUBL LTD, 2019-10-29)
    Renewed efforts to eliminate malaria have highlighted the potential to interrupt human-to-mosquito transmission - a process mediated by gametocyte kinetics in human hosts. Here we study the in vivo dynamics of Plasmodium falciparum gametocytes by establishing a framework which incorporates improved measurements of parasitemia, a novel gametocyte dynamics model and model fitting using Bayesian hierarchical inference. We found that the model provides an excellent fit to the clinical data from 17 volunteers infected with P. falciparum (3D7 strain) and reliably predicts observed gametocytemia. We estimated the sexual commitment rate and gametocyte sequestration time to be 0.54% (95% credible interval: 0.30-1.00%) per asexual replication cycle and 8.39 (6.54-10.59) days respectively. We used the data-calibrated model to investigate human-to-mosquito transmissibility, providing a method to link within-human host infection kinetics to epidemiological-scale infection and transmission patterns.
  • Item
    Thumbnail Image
    A Dynamic Stress Model Explains the Delayed Drug Effect in Artemisinin Treatment of Plasmodium falciparum
    Cao, P ; Klonis, N ; Zaloumis, S ; Dogovski, C ; Xie, SC ; Saralamba, S ; White, LJ ; Fowkes, FJI ; Tilley, L ; Simpson, JA ; McCaw, JM (AMER SOC MICROBIOLOGY, 2017-12)
    Artemisinin resistance constitutes a major threat to the continued success of control programs for malaria, particularly in light of developing resistance to partner drugs. Improving our understanding of how artemisinin-based drugs act and how resistance manifests is essential for the optimization of dosing regimens and the development of strategies to prolong the life span of current first-line treatment options. Recent short-drug-pulse in vitro experiments have shown that the parasite killing rate depends not only on drug concentration but also the exposure time, challenging the standard pharmacokinetic-pharmacodynamic (PK-PD) paradigm in which the killing rate depends only on drug concentration. Here, we introduce a dynamic stress model of parasite killing and show through application to 3D7 laboratory strain viability data that the inclusion of a time-dependent parasite stress response dramatically improves the model's explanatory power compared to that of a traditional PK-PD model. Our model demonstrates that the previously reported hypersensitivity of early-ring-stage parasites of the 3D7 strain to dihydroartemisinin compared to other parasite stages is due primarily to a faster development of stress rather than a higher maximum achievable killing rate. We also perform in vivo simulations using the dynamic stress model and demonstrate that the complex temporal features of artemisinin action observed in vitro have a significant impact on predictions for in vivo parasite clearance. Given the important role that PK-PD models play in the design of clinical trials for the evaluation of alternative drug dosing regimens, our novel model will contribute to the further development and improvement of antimalarial therapies.
  • Item
    Thumbnail Image
    The Mechanisms for Within-Host Influenza Virus Control Affect Model-Based Assessment and Prediction of Antiviral Treatment
    Cao, P ; McCaw, JM (MDPI AG, 2017-08-01)
    Models of within-host influenza viral dynamics have contributed to an improved understanding of viral dynamics and antiviral effects over the past decade. Existing models can be classified into two broad types based on the mechanism of viral control: models utilising target cell depletion to limit the progress of infection and models which rely on timely activation of innate and adaptive immune responses to control the infection. In this paper, we compare how two exemplar models based on these different mechanisms behave and investigate how the mechanistic difference affects the assessment and prediction of antiviral treatment. We find that the assumed mechanism for viral control strongly influences the predicted outcomes of treatment. Furthermore, we observe that for the target cell-limited model the assumed drug efficacy strongly influences the predicted treatment outcomes. The area under the viral load curve is identified as the most reliable predictor of drug efficacy, and is robust to model selection. Moreover, with support from previous clinical studies, we suggest that the target cell-limited model is more suitable for modelling in vitro assays or infection in some immunocompromised/immunosuppressed patients while the immune response model is preferred for predicting the infection/antiviral effect in immunocompetent animals/patients.
  • Item
    Thumbnail Image
    Clonally diverse CD38+HLA-DR+CD8+ T cells persist during fatal H7N9 disease
    Wang, Z ; Zhu, L ; Nguyen, THO ; Wan, Y ; Sant, S ; Quinones-Parra, SM ; Crawford, JC ; Eltahla, AA ; Rizzetto, S ; Bull, RA ; Qiu, C ; Koutsakos, M ; Clemens, EB ; Loh, L ; Chen, T ; Liu, L ; Cao, P ; Ren, Y ; Kedzierski, L ; Kotsimbos, T ; McCaw, JM ; La Gruta, NL ; Turner, SJ ; Cheng, AC ; Luciani, F ; Zhang, X ; Doherty, PC ; Thomas, PG ; Xu, J ; Kedzierska, K (NATURE PORTFOLIO, 2018-02-26)
    Severe influenza A virus (IAV) infection is associated with immune dysfunction. Here, we show circulating CD8+ T-cell profiles from patients hospitalized with avian H7N9, seasonal IAV, and influenza vaccinees. Patient survival reflects an early, transient prevalence of highly activated CD38+HLA-DR+PD-1+ CD8+ T cells, whereas the prolonged persistence of this set is found in ultimately fatal cases. Single-cell T cell receptor (TCR)-αβ analyses of activated CD38+HLA-DR+CD8+ T cells show similar TCRαβ diversity but differential clonal expansion kinetics in surviving and fatal H7N9 patients. Delayed clonal expansion associated with an early dichotomy at a transcriptome level (as detected by single-cell RNAseq) is found in CD38+HLA-DR+CD8+ T cells from patients who succumbed to the disease, suggesting a divergent differentiation pathway of CD38+HLA-DR+CD8+ T cells from the outset during fatal disease. Our study proposes that effective expansion of cross-reactive influenza-specific TCRαβ clonotypes with appropriate transcriptome signatures is needed for early protection against severe influenza disease.
  • Item
    Thumbnail Image
    On the Role of CD8+ T Cells in Determining Recovery Time from Influenza Virus Infection
    Cao, P ; Wang, Z ; Yan, AWC ; McVernon, J ; Xu, J ; Heffernan, JM ; Kedzierska, K ; McCaw, JM (FRONTIERS MEDIA SA, 2016-12-20)
    Myriad experiments have identified an important role for CD8+ T cell response mechanisms in determining recovery from influenza A virus infection. Animal models of influenza infection further implicate multiple elements of the immune response in defining the dynamical characteristics of viral infection. To date, influenza virus models, while capturing particular aspects of the natural infection history, have been unable to reproduce the full gamut of observed viral kinetic behavior in a single coherent framework. Here, we introduce a mathematical model of influenza viral dynamics incorporating innate, humoral, and cellular immune components and explore its properties with a particular emphasis on the role of cellular immunity. Calibrated against a range of murine data, our model is capable of recapitulating observed viral kinetics from a multitude of experiments. Importantly, the model predicts a robust exponential relationship between the level of effector CD8+ T cells and recovery time, whereby recovery time rapidly decreases to a fixed minimum recovery time with an increasing level of effector CD8+ T cells. We find support for this relationship in recent clinical data from influenza A (H7N9) hospitalized patients. The exponential relationship implies that people with a lower level of naive CD8+ T cells may receive significantly more benefit from induction of additional effector CD8+ T cells arising from immunological memory, itself established through either previous viral infection or T cell-based vaccines.
  • Item
    Thumbnail Image
    Comparison of the Exposure Time Dependence of the Activities of Synthetic Ozonide Antimalarials and Dihydroartemisinin against K13 Wild-Type and Mutant Plasmodium falciparum Strains
    Yang, T ; Xie, SC ; Cao, P ; Giannangelo, C ; McCaw, J ; Creek, DJ ; Charman, SA ; Klonis, N ; Tilley, L (AMER SOC MICROBIOLOGY, 2016-08)
    Fully synthetic endoperoxide antimalarials, namely, OZ277 (RBx11160; also known as arterolane) and OZ439 (artefenomel), have been approved for marketing or are currently in clinical development. We undertook an analysis of the kinetics of the in vitro responses of Plasmodium falciparum to the new ozonide antimalarials. For these studies we used a K13 mutant (artemisinin resistant) isolate from a region in Cambodia and a genetically matched (artemisinin sensitive) K13 revertant. We used a pulsed-exposure assay format to interrogate the time dependence of the response. Because the ozonides have physicochemical properties different from those of the artemisinins, assay optimization was required to ensure that the drugs were completely removed following the pulsed exposure. Like that of artemisinins, ozonide activity requires active hemoglobin degradation. Short pulses of the ozonides were less effective than short pulses of dihydroartemisinin; however, when early-ring-stage parasites were exposed to drugs for periods relevant to their in vivo exposure, the ozonide antimalarials were markedly more effective.
  • Item
    Thumbnail Image
    Interval Between Infections and Viral Hierarchy Are Determinants of Viral Interference Following Influenza Virus Infection in a Ferret Model
    Laurie, KL ; Guarnaccia, TA ; Carolan, LA ; Yan, AWC ; Aban, M ; Petrie, S ; Cao, P ; Heffernan, JM ; McVernon, J ; Mosse, J ; Kelso, A ; Mccaw, JM ; Barr, IG (OXFORD UNIV PRESS INC, 2015-12-01)
    BACKGROUND: Epidemiological studies suggest that, following infection with influenza virus, there is a short period during which a host experiences a lower susceptibility to infection with other influenza viruses. This viral interference appears to be independent of any antigenic similarities between the viruses. We used the ferret model of human influenza to systematically investigate viral interference. METHODS: Ferrets were first infected then challenged 1-14 days later with pairs of influenza A(H1N1)pdm09, influenza A(H3N2), and influenza B viruses circulating in 2009 and 2010. RESULTS: Viral interference was observed when the interval between initiation of primary infection and subsequent challenge was <1 week. This effect was virus specific and occurred between antigenically related and unrelated viruses. Coinfections occurred when 1 or 3 days separated infections. Ongoing shedding from the primary virus infection was associated with viral interference after the secondary challenge. CONCLUSIONS: The interval between infections and the sequential combination of viruses were important determinants of viral interference. The influenza viruses in this study appear to have an ordered hierarchy according to their ability to block or delay infection, which may contribute to the dominance of different viruses often seen in an influenza season.
  • Item
    Thumbnail Image
    Innate Immunity and the Inter-exposure Interval Determine the Dynamics of Secondary Influenza Virus Infection and Explain Observed Viral Hierarchies
    Cao, P ; Yan, AWC ; Heffernan, JM ; Petrie, S ; Moss, RG ; Carolan, LA ; Guarnaccia, TA ; Kelso, A ; Barr, IG ; McVernon, J ; Laurie, KL ; McCaw, JM ; Koelle, K (PUBLIC LIBRARY SCIENCE, 2015-08)
    Influenza is an infectious disease that primarily attacks the respiratory system. Innate immunity provides both a very early defense to influenza virus invasion and an effective control of viral growth. Previous modelling studies of virus-innate immune response interactions have focused on infection with a single virus and, while improving our understanding of viral and immune dynamics, have been unable to effectively evaluate the relative feasibility of different hypothesised mechanisms of antiviral immunity. In recent experiments, we have applied consecutive exposures to different virus strains in a ferret model, and demonstrated that viruses differed in their ability to induce a state of temporary immunity or viral interference capable of modifying the infection kinetics of the subsequent exposure. These results imply that virus-induced early immune responses may be responsible for the observed viral hierarchy. Here we introduce and analyse a family of within-host models of re-infection viral kinetics which allow for different viruses to stimulate the innate immune response to different degrees. The proposed models differ in their hypothesised mechanisms of action of the non-specific innate immune response. We compare these alternative models in terms of their abilities to reproduce the re-exposure data. Our results show that 1) a model with viral control mediated solely by a virus-resistant state, as commonly considered in the literature, is not able to reproduce the observed viral hierarchy; 2) the synchronised and desynchronised behaviour of consecutive virus infections is highly dependent upon the interval between primary virus and challenge virus exposures and is consistent with virus-dependent stimulation of the innate immune response. Our study provides the first mechanistic explanation for the recently observed influenza viral hierarchies and demonstrates the importance of understanding the host response to multi-strain viral infections. Re-exposure experiments provide a new paradigm in which to study the immune response to influenza and its role in viral control.