School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 3 of 3
  • Item
    No Preview Available
    Development and Validation of an In Silico Decision Tool To Guide Optimization of Intravenous Artesunate Dosing Regimens for Severe Falciparum Malaria Patients
    Zaloumis, SG ; Whyte, JM ; Tarning, J ; Krishna, S ; McCaw, JM ; Cao, P ; White, MT ; Dini, S ; Fowkes, FJ ; Maude, RJ ; Kremsner, P ; Dondorp, A ; Price, RN ; White, NJ ; Simpson, JA (AMER SOC MICROBIOLOGY, 2021-06)
    Most deaths from severe falciparum malaria occur within 24 h of presentation to a hospital. Intravenous (i.v.) artesunate is the first-line treatment for severe falciparum malaria, but its efficacy may be compromised by delayed parasitological responses. In patients with severe malaria, the life-saving benefit of the artemisinin derivatives is their ability to clear circulating parasites rapidly, before they can sequester and obstruct the microcirculation. To evaluate the dosing of i.v. artesunate for the treatment of artemisinin-sensitive and reduced ring stage sensitivity to artemisinin severe falciparum malaria infections, Bayesian pharmacokinetic-pharmacodynamic modeling of data from 94 patients with severe malaria (80 children from Africa and 14 adults from Southeast Asia) was performed. Assuming that delayed parasite clearance reflects a loss of ring stage sensitivity to artemisinin derivatives, the median (95% credible interval) percentage of patients clearing ≥99% of parasites within 24 h (PC24≥99%) for standard (2.4 mg/kg body weight i.v. artesunate at 0 and 12 h) and simplified (4 mg/kg i.v. artesunate at 0 h) regimens was 65% (52.5% to 74.5%) versus 44% (25% to 61.5%) for adults, 62% (51.5% to 74.5%) versus 39% (20.5% to 58.5%) for larger children (≥20 kg), and 60% (48.5% to 70%) versus 36% (20% to 53.5%) for smaller children (<20 kg). The upper limit of the credible intervals for all regimens was below a PC24≥99% of 80%, a threshold achieved on average in clinical studies of severe falciparum malaria infections. In severe falciparum malaria caused by parasites with reduced ring stage susceptibility to artemisinin, parasite clearance is predicted to be slower with both the currently recommended and proposed simplified i.v. artesunate dosing regimens.
  • Item
    Thumbnail Image
    Identifying and combating the impacts of COVID-19 on malaria
    Rogerson, SJ ; Beeson, JG ; Laman, M ; Poespoprodjo, JR ; William, T ; Simpson, JA ; Price, RN (BMC, 2020-07-30)
    BACKGROUND: The COVID-19 pandemic has resulted in millions of infections, hundreds of thousands of deaths and major societal disruption due to lockdowns and other restrictions introduced to limit disease spread. Relatively little attention has been paid to understanding how the pandemic has affected treatment, prevention and control of malaria, which is a major cause of death and disease and predominantly affects people in less well-resourced settings. MAIN BODY: Recent successes in malaria control and elimination have reduced the global malaria burden, but these gains are fragile and progress has stalled in the past 5 years. Withdrawing successful interventions often results in rapid malaria resurgence, primarily threatening vulnerable young children and pregnant women. Malaria programmes are being affected in many ways by COVID-19. For prevention of malaria, insecticide-treated nets need regular renewal, but distribution campaigns have been delayed or cancelled. For detection and treatment of malaria, individuals may stop attending health facilities, out of fear of exposure to COVID-19, or because they cannot afford transport, and health care workers require additional resources to protect themselves from COVID-19. Supplies of diagnostics and drugs are being interrupted, which is compounded by production of substandard and falsified medicines and diagnostics. These disruptions are predicted to double the number of young African children dying of malaria in the coming year and may impact efforts to control the spread of drug resistance. Using examples from successful malaria control and elimination campaigns, we propose strategies to re-establish malaria control activities and maintain elimination efforts in the context of the COVID-19 pandemic, which is likely to be a long-term challenge. All sectors of society, including governments, donors, private sector and civil society organisations, have crucial roles to play to prevent malaria resurgence. Sparse resources must be allocated efficiently to ensure integrated health care systems that can sustain control activities against COVID-19 as well as malaria and other priority infectious diseases. CONCLUSION: As we deal with the COVID-19 pandemic, it is crucial that other major killers such as malaria are not ignored. History tells us that if we do, the consequences will be dire, particularly in vulnerable populations.
  • Item
    Thumbnail Image
    Identifying and combating the impacts of COVID-19 on malaria
    Rogerson, SJ ; Beeson, JG ; Laman, M ; Poespoprodjo, JR ; William, T ; Simpson, JA ; Price, RN (BMC, 2020-07-30)
    BACKGROUND: The COVID-19 pandemic has resulted in millions of infections, hundreds of thousands of deaths and major societal disruption due to lockdowns and other restrictions introduced to limit disease spread. Relatively little attention has been paid to understanding how the pandemic has affected treatment, prevention and control of malaria, which is a major cause of death and disease and predominantly affects people in less well-resourced settings. MAIN BODY: Recent successes in malaria control and elimination have reduced the global malaria burden, but these gains are fragile and progress has stalled in the past 5 years. Withdrawing successful interventions often results in rapid malaria resurgence, primarily threatening vulnerable young children and pregnant women. Malaria programmes are being affected in many ways by COVID-19. For prevention of malaria, insecticide-treated nets need regular renewal, but distribution campaigns have been delayed or cancelled. For detection and treatment of malaria, individuals may stop attending health facilities, out of fear of exposure to COVID-19, or because they cannot afford transport, and health care workers require additional resources to protect themselves from COVID-19. Supplies of diagnostics and drugs are being interrupted, which is compounded by production of substandard and falsified medicines and diagnostics. These disruptions are predicted to double the number of young African children dying of malaria in the coming year and may impact efforts to control the spread of drug resistance. Using examples from successful malaria control and elimination campaigns, we propose strategies to re-establish malaria control activities and maintain elimination efforts in the context of the COVID-19 pandemic, which is likely to be a long-term challenge. All sectors of society, including governments, donors, private sector and civil society organisations, have crucial roles to play to prevent malaria resurgence. Sparse resources must be allocated efficiently to ensure integrated health care systems that can sustain control activities against COVID-19 as well as malaria and other priority infectious diseases. CONCLUSION: As we deal with the COVID-19 pandemic, it is crucial that other major killers such as malaria are not ignored. History tells us that if we do, the consequences will be dire, particularly in vulnerable populations.