School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    COVID-19 vaccine coverage targets to inform reopening plans in a low incidence setting
    Conway, E ; Walker, CR ; Baker, C ; Lydeamore, MJ ; Ryan, GE ; Campbell, T ; Miller, JC ; Rebuli, N ; Yeung, M ; Kabashima, G ; Geard, N ; Wood, J ; McCaw, JM ; McVernon, J ; Golding, N ; Price, DJ ; Shearer, FM (ROYAL SOC, 2023-08-30)
    Since the emergence of SARS-CoV-2 in 2019 through to mid-2021, much of the Australian population lived in a COVID-19-free environment. This followed the broadly successful implementation of a strong suppression strategy, including international border closures. With the availability of COVID-19 vaccines in early 2021, the national government sought to transition from a state of minimal incidence and strong suppression activities to one of high vaccine coverage and reduced restrictions but with still-manageable transmission. This transition is articulated in the national 're-opening' plan released in July 2021. Here, we report on the dynamic modelling study that directly informed policies within the national re-opening plan including the identification of priority age groups for vaccination, target vaccine coverage thresholds and the anticipated requirements for continued public health measures-assuming circulation of the Delta SARS-CoV-2 variant. Our findings demonstrated that adult vaccine coverage needed to be at least 60% to minimize public health and clinical impacts following the establishment of community transmission. They also supported the need for continued application of test-trace-isolate-quarantine and social measures during the vaccine roll-out phase and beyond.
  • Item
    No Preview Available
    Forecasting COVID-19 activity in Australia to support pandemic response: May to October 2020
    Moss, R ; Price, DJ ; Golding, N ; Dawson, P ; McVernon, J ; Hyndman, RJ ; Shearer, FM ; McCaw, JM (NATURE PORTFOLIO, 2023-05-30)
    As of January 2021, Australia had effectively controlled local transmission of COVID-19 despite a steady influx of imported cases and several local, but contained, outbreaks in 2020. Throughout 2020, state and territory public health responses were informed by weekly situational reports that included an ensemble forecast of daily COVID-19 cases for each jurisdiction. We present here an analysis of one forecasting model included in this ensemble across the variety of scenarios experienced by each jurisdiction from May to October 2020. We examine how successfully the forecasts characterised future case incidence, subject to variations in data timeliness and completeness, showcase how we adapted these forecasts to support decisions of public health priority in rapidly-evolving situations, evaluate the impact of key model features on forecast skill, and demonstrate how to assess forecast skill in real-time before the ground truth is known. Conditioning the model on the most recent, but incomplete, data improved the forecast skill, emphasising the importance of developing strong quantitative models of surveillance system characteristics, such as ascertainment delay distributions. Forecast skill was highest when there were at least 10 reported cases per day, the circumstances in which authorities were most in need of forecasts to aid in planning and response.
  • Item
    Thumbnail Image
    A modelling approach to estimate the transmissibility of SARS-CoV-2 during periods of high, low, and zero case incidence
    Golding, N ; Price, DJ ; Ryan, G ; McVernon, J ; McCaw, JM ; Shearer, FM (eLIFE SCIENCES PUBL LTD, 2023-01-20)
    Against a backdrop of widespread global transmission, a number of countries have successfully brought large outbreaks of COVID-19 under control and maintained near-elimination status. A key element of epidemic response is the tracking of disease transmissibility in near real-time. During major outbreaks, the effective reproduction number can be estimated from a time-series of case, hospitalisation or death counts. In low or zero incidence settings, knowing the potential for the virus to spread is a response priority. Absence of case data means that this potential cannot be estimated directly. We present a semi-mechanistic modelling framework that draws on time-series of both behavioural data and case data (when disease activity is present) to estimate the transmissibility of SARS-CoV-2 from periods of high to low - or zero - case incidence, with a coherent transition in interpretation across the changing epidemiological situations. Of note, during periods of epidemic activity, our analysis recovers the effective reproduction number, while during periods of low - or zero - case incidence, it provides an estimate of transmission risk. This enables tracking and planning of progress towards the control of large outbreaks, maintenance of virus suppression, and monitoring the risk posed by re-introduction of the virus. We demonstrate the value of our methods by reporting on their use throughout 2020 in Australia, where they have become a central component of the national COVID-19 response.
  • Item
    Thumbnail Image
    COVID-19 in low-tolerance border quarantine systems: Impact of the Delta variant of SARS-CoV-2
    Zachreson, C ; Shearer, FM ; Price, DJ ; Lydeamore, MJ ; McVernon, J ; McCaw, J ; Geard, N (AMER ASSOC ADVANCEMENT SCIENCE, 2022-04)
    In controlling transmission of coronavirus disease 2019 (COVID-19), the effectiveness of border quarantine strategies is a key concern for jurisdictions in which the local prevalence of disease and immunity is low. In settings like this such as China, Australia, and New Zealand, rare outbreak events can lead to escalating epidemics and trigger the imposition of large-scale lockdown policies. Here, we develop and apply an individual-based model of COVID-19 to simulate case importation from managed quarantine under various vaccination scenarios. We then use the output of the individual-based model as input to a branching process model to assess community transmission risk. For parameters corresponding to the Delta variant, our results demonstrate that vaccination effectively counteracts the pathogen's increased infectiousness. To prevent outbreaks, heightened vaccination in border quarantine systems must be combined with mass vaccination. The ultimate success of these programs will depend sensitively on the efficacy of vaccines against viral transmission.
  • Item
    No Preview Available
    Development of an influenza pandemic decision support tool linking situational analytics to national response policy.
    Shearer, FM ; Moss, R ; Price, DJ ; Zarebski, AE ; Ballard, PG ; McVernon, J ; Ross, JV ; McCaw, JM (Elsevier, 2021-06-19)
    National influenza pandemic plans have evolved substantially over recent decades, as has the scientific research that underpins the advice contained within them. While the knowledge generated by many research activities has been directly incorporated into the current generation of pandemic plans, scientists and policymakers are yet to capitalise fully on the potential for near real-time analytics to formally contribute to epidemic decision-making. Theoretical studies demonstrate that it is now possible to make robust estimates of pandemic impact in the earliest stages of a pandemic using first few hundred household cohort (FFX) studies and algorithms designed specifically for analysing FFX data. Pandemic plans already recognise the importance of both situational awareness i.e., knowing pandemic impact and its key drivers, and the need for pandemic special studies and related analytic methods for estimating these drivers. An important next step is considering how information from these situational assessment activities can be integrated into the decision-making processes articulated in pandemic planning documents. Here we introduce a decision support tool that directly uses outputs from FFX algorithms to present recommendations on response options, including a quantification of uncertainty, to decision makers. We illustrate this approach using response information from within the Australian influenza pandemic plan.
  • Item
    Thumbnail Image
    Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
    Lydeamore, MJ ; Campbell, PT ; Price, DJ ; Wu, Y ; Marcato, AJ ; Cuningham, W ; Carapetis, JR ; Andrews, RM ; McDonald, M ; McVernon, J ; Tong, SYC ; McCaw, JM ; Kouyos, RD (Public Library of Science (PLoS), 2020-10-01)
    Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communities, Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven primarily in these settings by Group A Streptococcus (GAS) contribute substantially to the disease burden in these areas. Despite this, estimates for the force of infection, infectious period and basic reproductive ratio—all necessary for the construction of dynamic transmission models—have not been obtained. By utilising three datasets each containing longitudinal infection information on individuals, we estimate each of these epidemiologically important parameters. With an eye to future study design, we also quantify the optimal sampling intervals for obtaining information about these parameters. We verify the estimation method through a simulation estimation study, and test each dataset to ensure suitability to the estimation method. We find that the force of infection differs by population prevalence, and the infectious period is estimated to be between 12 and 20 days. We also find that optimal sampling interval depends on setting, with an optimal sampling interval between 9 and 11 days in a high prevalence setting, and 21 and 27 days for a lower prevalence setting. These estimates unlock future model-based investigations on the transmission dynamics of skin sores.
  • Item
    Thumbnail Image
    Early analysis of the Australian COVID-19 epidemic
    Price, DJ ; Shearer, FM ; Meehan, MT ; McBryde, E ; Moss, R ; Golding, N ; Conway, EJ ; Dawson, P ; Cromer, D ; Wood, J ; Abbott, S ; McVernon, J ; McCaw, JM (eLIFE SCIENCES PUBL LTD, 2020-08-13)
    As of 1 May 2020, there had been 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. The epidemic had been in decline since mid-March, with 308 cases confirmed nationally since 14 April. This suggests that the collective actions of the Australian public and government authorities in response to COVID-19 were sufficiently early and assiduous to avert a public health crisis - for now. Analysing factors that contribute to individual country experiences of COVID-19, such as the intensity and timing of public health interventions, will assist in the next stage of response planning globally. We describe how the epidemic and public health response unfolded in Australia up to 13 April. We estimate that the effective reproduction number was likely below one in each Australian state since mid-March and forecast that clinical demand would remain below capacity thresholds over the forecast period (from mid-to-late April).