School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 9 of 9
  • Item
    Thumbnail Image
    Rapid assessment of the risk of SARS-CoV-2 importation: case study and lessons learned
    Shearer, FM ; Walker, J ; Tellioglu, N ; McCaw, JM ; McVernon, J ; Black, A ; Geard, N (ELSEVIER, 2022-03-01)
    During the early stages of an emerging disease outbreak, governments are required to make critical decisions on how to respond, despite limited data being available to inform these decisions. Analytical risk assessment is a valuable approach to guide decision-making on travel restrictions and border measures during the early phase of an outbreak. Here we describe a rapid risk assessment framework that was developed in February 2020 to support time-critical decisions on the risk of SARS-CoV-2 importation into Australia. We briefly describe the context in which our framework was developed, the framework itself, and provide an example of the type of decision support provided to the Australian government. We then report a critical evaluation of the modelling choices made in February 2020, assessing the impact of our assumptions on estimated rates of importation, and provide a summary of "lessons learned". The framework presented and evaluated here provides a flexible approach to rapid assessment of importation risk, of relevance to current and future pandemic scenarios.
  • Item
    Thumbnail Image
    COVID-19 in low-tolerance border quarantine systems: Impact of the Delta variant of SARS-CoV-2
    Zachreson, C ; Shearer, FM ; Price, DJ ; Lydeamore, MJ ; McVernon, J ; McCaw, J ; Geard, N (AMER ASSOC ADVANCEMENT SCIENCE, 2022-04-01)
    In controlling transmission of coronavirus disease 2019 (COVID-19), the effectiveness of border quarantine strategies is a key concern for jurisdictions in which the local prevalence of disease and immunity is low. In settings like this such as China, Australia, and New Zealand, rare outbreak events can lead to escalating epidemics and trigger the imposition of large-scale lockdown policies. Here, we develop and apply an individual-based model of COVID-19 to simulate case importation from managed quarantine under various vaccination scenarios. We then use the output of the individual-based model as input to a branching process model to assess community transmission risk. For parameters corresponding to the Delta variant, our results demonstrate that vaccination effectively counteracts the pathogen's increased infectiousness. To prevent outbreaks, heightened vaccination in border quarantine systems must be combined with mass vaccination. The ultimate success of these programs will depend sensitively on the efficacy of vaccines against viral transmission.
  • Item
    Thumbnail Image
    From Climate Change to Pandemics: Decision Science Can Help Scientists Have Impact
    Baker, CM ; Campbell, PT ; Chades, I ; Dean, AJ ; Hester, SM ; Holden, MH ; McCaw, JM ; McVernon, J ; Moss, R ; Shearer, FM ; Possingham, HP (FRONTIERS MEDIA SA, 2022-02-14)
    Scientific knowledge and advances are a cornerstone of modern society. They improve our understanding of the world we live in and help us navigate global challenges including emerging infectious diseases, climate change and the biodiversity crisis. However, there is a perpetual challenge in translating scientific insight into policy. Many articles explain how to better bridge the gap through improved communication and engagement, but we believe that communication and engagement are only one part of the puzzle. There is a fundamental tension between science and policy because scientific endeavors are rightfully grounded in discovery, but policymakers formulate problems in terms of objectives, actions and outcomes. Decision science provides a solution by framing scientific questions in a way that is beneficial to policy development, facilitating scientists’ contribution to public discussion and policy. At its core, decision science is a field that aims to pinpoint evidence-based management strategies by focussing on those objectives, actions, and outcomes defined through the policy process. The importance of scientific discovery here is in linking actions to outcomes, helping decision-makers determine which actions best meet their objectives. In this paper we explain how problems can be formulated through the structured decision-making process. We give our vision for what decision science may grow to be, describing current gaps in methodology and application. By better understanding and engaging with the decision-making processes, scientists can have greater impact and make stronger contributions to important societal problems.
  • Item
    No Preview Available
    Development of an influenza pandemic decision support tool linking situational analytics to national response policy.
    Shearer, FM ; Moss, R ; Price, DJ ; Zarebski, AE ; Ballard, PG ; McVernon, J ; Ross, JV ; McCaw, JM (Elsevier, 2021-06-19)
    National influenza pandemic plans have evolved substantially over recent decades, as has the scientific research that underpins the advice contained within them. While the knowledge generated by many research activities has been directly incorporated into the current generation of pandemic plans, scientists and policymakers are yet to capitalise fully on the potential for near real-time analytics to formally contribute to epidemic decision-making. Theoretical studies demonstrate that it is now possible to make robust estimates of pandemic impact in the earliest stages of a pandemic using first few hundred household cohort (FFX) studies and algorithms designed specifically for analysing FFX data. Pandemic plans already recognise the importance of both situational awareness i.e., knowing pandemic impact and its key drivers, and the need for pandemic special studies and related analytic methods for estimating these drivers. An important next step is considering how information from these situational assessment activities can be integrated into the decision-making processes articulated in pandemic planning documents. Here we introduce a decision support tool that directly uses outputs from FFX algorithms to present recommendations on response options, including a quantification of uncertainty, to decision makers. We illustrate this approach using response information from within the Australian influenza pandemic plan.
  • Item
    No Preview Available
    Assessing the risk of spread of COVID-19 to the Asia Pacific region
    Shearer, F ; Walker, J ; Tellioglu, N ; McCaw, J ; McVernon, J ; Black, A ; Geard, N ( 2020-04-11)
    During the early stages of an emerging disease outbreak, governments are required to make critical decisions on how to respond appropriately, despite limited data being available to inform these decisions. Analytical risk assessment is a valuable approach to guide decision-making on travel restrictions and border measures during the early phase of an outbreak, when transmission is primarily contained within a source country. Here we introduce a modular framework for estimating the importation risk of an emerging disease when the direct travel route is restricted and the risk stems from indirect importation via intermediary countries. This was the situation for Australia in February 2020. The framework was specifically developed to assess the importation risk of COVID-19 into Australia during the early stages of the outbreak from late January to mid-February 2020. The dominant importation risk to Australia at the time of analysis was directly from China, as the only country reporting uncontained transmission. However, with travel restrictions from mainland China to Australia imposed from February 1, our framework was designed to consider the importation risk from China into Australia via potential intermediary countries in the Asia Pacific region. The framework was successfully used to contribute to the evidence base for decisions on border measures and case definitions in the Australian context during the early phase of COVID-19 emergence and is adaptable to other contexts for future outbreak response.
  • Item
    Thumbnail Image
    Modelling the impact of COVID-19 in Australia to inform transmission reducing measures and health system preparedness
    Moss, R ; Wood, J ; Brown, D ; Shearer, F ; Black, AJ ; Cheng, AC ; McCaw, JM ; McVernon, J ( 2020-04-11)

    ABSTRACT

    Background

    The ability of global health systems to cope with increasing numbers of COVID-19 cases is of major concern. In readiness for this challenge, Australia has drawn on clinical pathway models developed over many years in preparation for influenza pandemics. These models have been used to estimate health care requirements for COVID-19 patients, in the context of broader public health measures.

    Methods

    An age and risk stratified transmission model of COVID-19 infection was used to simulate an unmitigated epidemic with parameter ranges reflecting uncertainty in current estimates of transmissibility and severity. Overlaid public health measures included case isolation and quarantine of contacts, and broadly applied social distancing. Clinical presentations and patient flows through the Australian health care system were simulated, including expansion of available intensive care capacity and alternative clinical assessment pathways.

    Findings

    An unmitigated COVID-19 epidemic would dramatically exceed the capacity of the Australian health system, over a prolonged period. Case isolation and contact quarantine alone will be insufficient to constrain case presentations within a feasible level of expansion of health sector capacity. Overlaid social restrictions will need to be applied at some level over the course of the epidemic to ensure that systems do not become overwhelmed, and that essential health sector functions, including care of COVID-19 patients, can be maintained. Attention to the full pathway of clinical care is needed to ensure access to critical care.

    Interpretation

    Reducing COVID-19 morbidity and mortality will rely on a combination of measures to strengthen and extend public health and clinical capacity, along with reduction of overall infection transmission in the community. Ongoing attention to maintaining and strengthening the capacity of health care systems and workers to manage cases is needed.

    Funding

    Australian Government Department of Health Office of Health Protection, Australian Government National Health and Medical Research Council
  • Item
    No Preview Available
    Coronavirus Disease Model to Inform Transmission -Reducing Measures and Health System Preparedness, Australia
    Moss, R ; Wood, J ; Brown, D ; Shearer, FM ; Black, AJ ; Glass, K ; Cheng, AC ; McCaw, JM ; McVernon, J (CENTERS DISEASE CONTROL & PREVENTION, 2020-12-01)
    The ability of health systems to cope with coronavirus disease (COVID-19) cases is of major concern. In preparation, we used clinical pathway models to estimate healthcare requirements for COVID-19 patients in the context of broader public health measures in Australia. An age- and risk-stratified transmission model of COVID-19 demonstrated that an unmitigated epidemic would dramatically exceed the capacity of the health system of Australia over a prolonged period. Case isolation and contact quarantine alone are insufficient to constrain healthcare needs within feasible levels of expansion of health sector capacity. Overlaid social restrictions must be applied over the course of the epidemic to ensure systems do not become overwhelmed and essential health sector functions, including care of COVID-19 patients, can be maintained. Attention to the full pathway of clinical care is needed, along with ongoing strengthening of capacity.
  • Item
    Thumbnail Image
    Infectious disease pandemic planning and response: Incorporating decision analysis
    Shearer, FM ; Moss, R ; McVernon, J ; Ross, JV ; McCaw, JM (PUBLIC LIBRARY SCIENCE, 2020-01-01)
    Freya Shearer and co-authors discuss the use of decision analysis in planning for infectious disease pandemics.
  • Item
    Thumbnail Image
    Early analysis of the Australian COVID-19 epidemic
    Price, DJ ; Shearer, FM ; Meehan, MT ; McBryde, E ; Moss, R ; Golding, N ; Conway, EJ ; Dawson, P ; Cromer, D ; Wood, J ; Abbott, S ; McVernon, J ; McCaw, JM (eLIFE SCIENCES PUBL LTD, 2020-08-13)
    As of 1 May 2020, there had been 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. The epidemic had been in decline since mid-March, with 308 cases confirmed nationally since 14 April. This suggests that the collective actions of the Australian public and government authorities in response to COVID-19 were sufficiently early and assiduous to avert a public health crisis - for now. Analysing factors that contribute to individual country experiences of COVID-19, such as the intensity and timing of public health interventions, will assist in the next stage of response planning globally. We describe how the epidemic and public health response unfolded in Australia up to 13 April. We estimate that the effective reproduction number was likely below one in each Australian state since mid-March and forecast that clinical demand would remain below capacity thresholds over the forecast period (from mid-to-late April).