School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    Rapid assessment of the risk of SARS-CoV-2 importation: case study and lessons learned
    Shearer, FM ; Walker, J ; Tellioglu, N ; McCaw, JM ; McVernon, J ; Black, A ; Geard, N (ELSEVIER, 2022-03-01)
    During the early stages of an emerging disease outbreak, governments are required to make critical decisions on how to respond, despite limited data being available to inform these decisions. Analytical risk assessment is a valuable approach to guide decision-making on travel restrictions and border measures during the early phase of an outbreak. Here we describe a rapid risk assessment framework that was developed in February 2020 to support time-critical decisions on the risk of SARS-CoV-2 importation into Australia. We briefly describe the context in which our framework was developed, the framework itself, and provide an example of the type of decision support provided to the Australian government. We then report a critical evaluation of the modelling choices made in February 2020, assessing the impact of our assumptions on estimated rates of importation, and provide a summary of "lessons learned". The framework presented and evaluated here provides a flexible approach to rapid assessment of importation risk, of relevance to current and future pandemic scenarios.
  • Item
    Thumbnail Image
    COVID-19 in low-tolerance border quarantine systems: Impact of the Delta variant of SARS-CoV-2
    Zachreson, C ; Shearer, FM ; Price, DJ ; Lydeamore, MJ ; McVernon, J ; McCaw, J ; Geard, N (AMER ASSOC ADVANCEMENT SCIENCE, 2022-04-01)
    In controlling transmission of coronavirus disease 2019 (COVID-19), the effectiveness of border quarantine strategies is a key concern for jurisdictions in which the local prevalence of disease and immunity is low. In settings like this such as China, Australia, and New Zealand, rare outbreak events can lead to escalating epidemics and trigger the imposition of large-scale lockdown policies. Here, we develop and apply an individual-based model of COVID-19 to simulate case importation from managed quarantine under various vaccination scenarios. We then use the output of the individual-based model as input to a branching process model to assess community transmission risk. For parameters corresponding to the Delta variant, our results demonstrate that vaccination effectively counteracts the pathogen's increased infectiousness. To prevent outbreaks, heightened vaccination in border quarantine systems must be combined with mass vaccination. The ultimate success of these programs will depend sensitively on the efficacy of vaccines against viral transmission.
  • Item
    Thumbnail Image
    From Climate Change to Pandemics: Decision Science Can Help Scientists Have Impact
    Baker, CM ; Campbell, PT ; Chades, I ; Dean, AJ ; Hester, SM ; Holden, MH ; McCaw, JM ; McVernon, J ; Moss, R ; Shearer, FM ; Possingham, HP (FRONTIERS MEDIA SA, 2022-02-14)
    Scientific knowledge and advances are a cornerstone of modern society. They improve our understanding of the world we live in and help us navigate global challenges including emerging infectious diseases, climate change and the biodiversity crisis. However, there is a perpetual challenge in translating scientific insight into policy. Many articles explain how to better bridge the gap through improved communication and engagement, but we believe that communication and engagement are only one part of the puzzle. There is a fundamental tension between science and policy because scientific endeavors are rightfully grounded in discovery, but policymakers formulate problems in terms of objectives, actions and outcomes. Decision science provides a solution by framing scientific questions in a way that is beneficial to policy development, facilitating scientists’ contribution to public discussion and policy. At its core, decision science is a field that aims to pinpoint evidence-based management strategies by focussing on those objectives, actions, and outcomes defined through the policy process. The importance of scientific discovery here is in linking actions to outcomes, helping decision-makers determine which actions best meet their objectives. In this paper we explain how problems can be formulated through the structured decision-making process. We give our vision for what decision science may grow to be, describing current gaps in methodology and application. By better understanding and engaging with the decision-making processes, scientists can have greater impact and make stronger contributions to important societal problems.
  • Item
    Thumbnail Image
    Optimal allocation of PCR tests to minimise disease transmission through contact tracing and quarantine
    Baker, CM ; Chades, I ; McVernon, J ; Robinson, AP ; Bondell, H (ELSEVIER, 2021-10-02)
    PCR testing is a crucial capability for managing disease outbreaks, but it is also a limited resource and must be used carefully to ensure the information gain from testing is valuable. Testing has two broad uses for informing public health policy, namely to track epidemic dynamics and to reduce transmission by identifying and managing cases. In this work we develop a modelling framework to examine the effects of test allocation in an epidemic, with a focus on using testing to minimise transmission. Using the COVID-19 pandemic as an example, we examine how the number of tests conducted per day relates to reduction in disease transmission, in the context of logistical constraints on the testing system. We show that if daily testing is above the routine capacity of a testing system, which can cause delays, then those delays can undermine efforts to reduce transmission through contact tracing and quarantine. This work highlights that the two goals of aiming to reduce transmission and aiming to identify all cases are different, and it is possible that focusing on one may undermine achieving the other. To develop an effective strategy, the goals must be clear and performance metrics must match the goals of the testing strategy. If metrics do not match the objectives of the strategy, then those metrics may incentivise actions that undermine achieving the objectives.
  • Item
    No Preview Available
    Development of an influenza pandemic decision support tool linking situational analytics to national response policy.
    Shearer, FM ; Moss, R ; Price, DJ ; Zarebski, AE ; Ballard, PG ; McVernon, J ; Ross, JV ; McCaw, JM (Elsevier, 2021-06-19)
    National influenza pandemic plans have evolved substantially over recent decades, as has the scientific research that underpins the advice contained within them. While the knowledge generated by many research activities has been directly incorporated into the current generation of pandemic plans, scientists and policymakers are yet to capitalise fully on the potential for near real-time analytics to formally contribute to epidemic decision-making. Theoretical studies demonstrate that it is now possible to make robust estimates of pandemic impact in the earliest stages of a pandemic using first few hundred household cohort (FFX) studies and algorithms designed specifically for analysing FFX data. Pandemic plans already recognise the importance of both situational awareness i.e., knowing pandemic impact and its key drivers, and the need for pandemic special studies and related analytic methods for estimating these drivers. An important next step is considering how information from these situational assessment activities can be integrated into the decision-making processes articulated in pandemic planning documents. Here we introduce a decision support tool that directly uses outputs from FFX algorithms to present recommendations on response options, including a quantification of uncertainty, to decision makers. We illustrate this approach using response information from within the Australian influenza pandemic plan.
  • Item
    No Preview Available
    Assessing the risk of spread of COVID-19 to the Asia Pacific region
    Shearer, F ; Walker, J ; Tellioglu, N ; McCaw, J ; McVernon, J ; Black, A ; Geard, N ( 2020-04-11)
    During the early stages of an emerging disease outbreak, governments are required to make critical decisions on how to respond appropriately, despite limited data being available to inform these decisions. Analytical risk assessment is a valuable approach to guide decision-making on travel restrictions and border measures during the early phase of an outbreak, when transmission is primarily contained within a source country. Here we introduce a modular framework for estimating the importation risk of an emerging disease when the direct travel route is restricted and the risk stems from indirect importation via intermediary countries. This was the situation for Australia in February 2020. The framework was specifically developed to assess the importation risk of COVID-19 into Australia during the early stages of the outbreak from late January to mid-February 2020. The dominant importation risk to Australia at the time of analysis was directly from China, as the only country reporting uncontained transmission. However, with travel restrictions from mainland China to Australia imposed from February 1, our framework was designed to consider the importation risk from China into Australia via potential intermediary countries in the Asia Pacific region. The framework was successfully used to contribute to the evidence base for decisions on border measures and case definitions in the Australian context during the early phase of COVID-19 emergence and is adaptable to other contexts for future outbreak response.
  • Item
    Thumbnail Image
    Modelling the impact of COVID-19 in Australia to inform transmission reducing measures and health system preparedness
    Moss, R ; Wood, J ; Brown, D ; Shearer, F ; Black, AJ ; Cheng, AC ; McCaw, JM ; McVernon, J ( 2020-04-11)

    ABSTRACT

    Background

    The ability of global health systems to cope with increasing numbers of COVID-19 cases is of major concern. In readiness for this challenge, Australia has drawn on clinical pathway models developed over many years in preparation for influenza pandemics. These models have been used to estimate health care requirements for COVID-19 patients, in the context of broader public health measures.

    Methods

    An age and risk stratified transmission model of COVID-19 infection was used to simulate an unmitigated epidemic with parameter ranges reflecting uncertainty in current estimates of transmissibility and severity. Overlaid public health measures included case isolation and quarantine of contacts, and broadly applied social distancing. Clinical presentations and patient flows through the Australian health care system were simulated, including expansion of available intensive care capacity and alternative clinical assessment pathways.

    Findings

    An unmitigated COVID-19 epidemic would dramatically exceed the capacity of the Australian health system, over a prolonged period. Case isolation and contact quarantine alone will be insufficient to constrain case presentations within a feasible level of expansion of health sector capacity. Overlaid social restrictions will need to be applied at some level over the course of the epidemic to ensure that systems do not become overwhelmed, and that essential health sector functions, including care of COVID-19 patients, can be maintained. Attention to the full pathway of clinical care is needed to ensure access to critical care.

    Interpretation

    Reducing COVID-19 morbidity and mortality will rely on a combination of measures to strengthen and extend public health and clinical capacity, along with reduction of overall infection transmission in the community. Ongoing attention to maintaining and strengthening the capacity of health care systems and workers to manage cases is needed.

    Funding

    Australian Government Department of Health Office of Health Protection, Australian Government National Health and Medical Research Council
  • Item
    No Preview Available
    Constructing an ethical framework for priority allocation of pandemic vaccines
    Fielding, J ; Sullivan, SG ; Beard, F ; Macartney, K ; Williams, J ; Dawson, A ; Gilbert, GL ; Massey, P ; Crooks, K ; Moss, R ; McCaw, JM ; McVernon, J (ELSEVIER SCI LTD, 2021-01-21)
    BACKGROUND: Allocation of scarce resources during a pandemic extends to the allocation of vaccines when they eventually become available. We describe a framework for priority vaccine allocation that employed a cross-disciplinary approach, guided by ethical considerations and informed by local risk assessment. METHODS: Published and grey literature was reviewed, and augmented by consultation with key informants, to collate past experience, existing guidelines and emerging strategies for pandemic vaccine deployment. Identified ethical issues and decision-making processes were also included. Concurrently, simulation modelling studies estimated the likely impacts of alternative vaccine allocation approaches. Assembled evidence was presented to a workshop of national experts in pandemic preparedness, vaccine strategy, implementation and ethics. All of this evidence was then used to generate a proposed ethical framework for vaccine priorities best suited to the Australian context. FINDINGS: Published and emerging guidance for priority pandemic vaccine distribution differed widely with respect to strategic objectives, specification of target groups, and explicit discussion of ethical considerations and decision-making processes. Flexibility in response was universally emphasised, informed by real-time assessment of the pandemic impact level, and identification of disproportionately affected groups. Model outputs aided identification of vaccine approaches most likely to achieve overarching goals in pandemics of varying transmissibility and severity. Pandemic response aims deemed most relevant for an Australian framework were: creating and maintaining trust, promoting equity, and reducing harmful outcomes. INTERPRETATION: Defining clear and ethically-defendable objectives for pandemic response in context aids development of flexible and adaptive decision support frameworks and facilitates clear communication and engagement activities.
  • Item
    No Preview Available
    Coronavirus Disease Model to Inform Transmission -Reducing Measures and Health System Preparedness, Australia
    Moss, R ; Wood, J ; Brown, D ; Shearer, FM ; Black, AJ ; Glass, K ; Cheng, AC ; McCaw, JM ; McVernon, J (CENTERS DISEASE CONTROL & PREVENTION, 2020-12-01)
    The ability of health systems to cope with coronavirus disease (COVID-19) cases is of major concern. In preparation, we used clinical pathway models to estimate healthcare requirements for COVID-19 patients in the context of broader public health measures in Australia. An age- and risk-stratified transmission model of COVID-19 demonstrated that an unmitigated epidemic would dramatically exceed the capacity of the health system of Australia over a prolonged period. Case isolation and contact quarantine alone are insufficient to constrain healthcare needs within feasible levels of expansion of health sector capacity. Overlaid social restrictions must be applied over the course of the epidemic to ensure systems do not become overwhelmed and essential health sector functions, including care of COVID-19 patients, can be maintained. Attention to the full pathway of clinical care is needed, along with ongoing strengthening of capacity.
  • Item
    Thumbnail Image
    Estimation of the force of infection and infectious period of skin sores in remote Australian communities using interval-censored data
    Lydeamore, MJ ; Campbell, PT ; Price, DJ ; Wu, Y ; Marcato, AJ ; Cuningham, W ; Carapetis, JR ; Andrews, RM ; McDonald, M ; McVernon, J ; Tong, SYC ; McCaw, JM ; Kouyos, RD (Public Library of Science (PLoS), 2020-10-01)
    Prevalence of impetigo (skin sores) remains high in remote Australian Aboriginal communities, Fiji, and other areas of socio-economic disadvantage. Skin sore infections, driven primarily in these settings by Group A Streptococcus (GAS) contribute substantially to the disease burden in these areas. Despite this, estimates for the force of infection, infectious period and basic reproductive ratio—all necessary for the construction of dynamic transmission models—have not been obtained. By utilising three datasets each containing longitudinal infection information on individuals, we estimate each of these epidemiologically important parameters. With an eye to future study design, we also quantify the optimal sampling intervals for obtaining information about these parameters. We verify the estimation method through a simulation estimation study, and test each dataset to ensure suitability to the estimation method. We find that the force of infection differs by population prevalence, and the infectious period is estimated to be between 12 and 20 days. We also find that optimal sampling interval depends on setting, with an optimal sampling interval between 9 and 11 days in a high prevalence setting, and 21 and 27 days for a lower prevalence setting. These estimates unlock future model-based investigations on the transmission dynamics of skin sores.