School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 51
  • Item
    Thumbnail Image
    Anatomy of a seasonal influenza epidemic forecast
    Moss, R ; Zarebski, AE ; Dawson, P ; Franklin, LJ ; Birrell, FA ; McCaw, JM (Department of Health, Australian Government, 2019-03-15)
    Bayesian methods have been used to predict the timing of infectious disease epidemics in various settings and for many infectious diseases, including seasonal influenza. But integrating these techniques into public health practice remains an ongoing challenge, and requires close collaboration between modellers, epidemiologists, and public health staff. During the 2016 and 2017 Australian influenza seasons, weekly seasonal influenza forecasts were produced for cities in the three states with the largest populations: Victoria, New South Wales and Queensland. Forecast results were presented to Health Department disease surveillance units in these jurisdictions, who provided feedback about the plausibility and public health utility of these predictions. In earlier studies we found that delays in reporting and processing of surveillance data substantially limited forecast performance, and that incorporating climatic effects on transmission improved forecast performance. In this study of the 2016 and 2017 seasons, we sought to refine the forecasting method to account for delays in receiving the data, and used meteorological data from past years to modulate the force of infection. We demonstrate how these refinements improved the forecast’s predictive capacity, and use the 2017 influenza season to highlight challenges in accounting for population and clinician behaviour changes in response to a severe season.
  • Item
    Thumbnail Image
    Turnover of Village Chickens Undermines Vaccine Coverage to Control HPAI H5N1
    Villanueva-Cabezas, JP ; Campbell, PT ; McCaw, JM ; Durr, PA ; McVernon, J (WILEY, 2017-02)
    Highly pathogenic avian influenza (HPAI) subtype H5N1 remains an enzootic disease of village chickens in Indonesia, posing ongoing risk at the animal-human interface. Previous modelling showed that the fast natural turnover of chicken populations might undermine herd immunity after vaccination, although actual details of how this effect applies to Indonesia's village chicken population have not been determined. We explored the turnover effect in Indonesia's scavenging and mixed populations of village chickens using an extended Leslie matrix model parameterized with data collected from village chicken flocks in Java region, Indonesia. Population dynamics were simulated for 208 weeks; the turnover effect was simulated for 16 weeks after vaccination in two 'best case' scenarios, where the whole population (scenario 1), or birds aged over 14 days (scenario 2), were vaccinated. We found that the scavenging and mixed populations have different productive traits. When steady-state dynamics are reached, both populations are dominated by females (54.5%), and 'growers' and 'chicks' represent the most abundant age stages with 39% and 38% in the scavenging, and 60% and 25% in the mixed population, respectively. Simulations showed that the population turnover might reduce the herd immunity below the critical threshold that prevents the re-emergence of HPAI H5N1 4-8 weeks (scavenging) and 6-9 weeks (mixed population) after vaccination in scenario 1, and 2-6 weeks (scavenging) and 4-7 weeks (mixed population) after vaccination in scenario 2. In conclusion, we found that Indonesia's village chicken population does not have a unique underlying population dynamic and therefore, different turnover effects on herd immunity may be expected after vaccination; nonetheless, our simulations carried out in best case scenarios highlight the limitations of current vaccine technologies to control HPAI H5N1. This suggests that the improvements and complementary strategies are necessary and must be explored.
  • Item
    Thumbnail Image
    Within-host modeling of blood-stage malaria
    Khoury, DS ; Aogo, R ; Randriafanomezantsoa-Radohery, G ; McCaw, JM ; Simpson, JA ; McCarthy, JS ; Haque, A ; Cromer, D ; Davenport, MP (WILEY, 2018-09)
    Malaria infection continues to be a major health problem worldwide and drug resistance in the major human parasite species, Plasmodium falciparum, is increasing in South East Asia. Control measures including novel drugs and vaccines are in development, and contributions to the rational design and optimal usage of these interventions are urgently needed. Infection involves the complex interaction of parasite dynamics, host immunity, and drug effects. The long life cycle (48 hours in the common human species) and synchronized replication cycle of the parasite population present significant challenges to modeling the dynamics of Plasmodium infection. Coupled with these, variation in immune recognition and drug action at different life cycle stages leads to further complexity. We review the development and progress of "within-host" models of Plasmodium infection, and how these have been applied to understanding and interpreting human infection and animal models of infection.
  • Item
    Thumbnail Image
    On the extinction probability in models of within-host infection: the role of latency and immunity
    Yan, AWC ; Cao, P ; McCaw, JM (SPRINGER HEIDELBERG, 2016-10)
    Not every exposure to virus establishes infection in the host; instead, the small amount of initial virus could become extinct due to stochastic events. Different diseases and routes of transmission have a different average number of exposures required to establish an infection. Furthermore, the host immune response and antiviral treatment affect not only the time course of the viral load provided infection occurs, but can prevent infection altogether by increasing the extinction probability. We show that the extinction probability when there is a time-dependent immune response depends on the chosen form of the model-specifically, on the presence or absence of a delay between infection of a cell and production of virus, and the distribution of latent and infectious periods of an infected cell. We hypothesise that experimentally measuring the extinction probability when the virus is introduced at different stages of the immune response, alongside the viral load which is usually measured, will improve parameter estimates and determine the most suitable mathematical form of the model.
  • Item
    Thumbnail Image
    Characterization of Influenza B Virus Variants with Reduced Neuraminidase Inhibitor Susceptibility
    Farrukee, R ; Zarebski, AE ; McCaw, JM ; Bloom, JD ; Reading, PC ; Hurt, AC (AMER SOC MICROBIOLOGY, 2018-11)
    Treatment options for influenza B virus infections are limited to neuraminidase inhibitors (NAIs), which block the neuraminidase (NA) glycoprotein on the virion surface. The development of NAI resistance would therefore result in a loss of antiviral treatment options for influenza B virus infections. This study characterized two contemporary influenza B viruses with known resistance-conferring NA amino acid substitutions, D197N and H273Y, detected during routine surveillance. The D197N and H273Y variants were characterized in vitro by assessing NA enzyme activity and affinity, as well as replication in cell culture compared to those of NAI-sensitive wild-type viruses. In vivo studies were also performed in ferrets to assess the replication and transmissibility of each variant. Mathematical models were used to analyze within-host and between-host fitness of variants relative to wild-type viruses. The data revealed that the H273Y variant had NA enzyme function similar to that of its wild type but had slightly reduced replication and transmission efficiency in vivo The D197N variant had impaired NA enzyme function, but there was no evidence of reduction in replication or transmission efficiency in ferrets. Our data suggest that the influenza B virus variant with the H273Y NA substitution had a more notable reduction in fitness compared to wild-type viruses than the influenza B variant with the D197N NA substitution. Although a D197N variant is yet to become widespread, it is the most commonly detected NAI-resistant influenza B virus in surveillance studies. Our results highlight the need to carefully monitor circulating viruses for the spread of influenza B viruses with the D197N NA substitution.
  • Item
    No Preview Available
    Investigating Viral Interference Between Influenza A Virus and Human Respiratory Syncytial Virus in a Ferret Model of Infection
    Chan, KF ; Carolan, LA ; Korenkov, D ; Druce, J ; McCaw, J ; Reading, PC ; Barr, IG ; Laurie, KL (OXFORD UNIV PRESS INC, 2018-08-01)
    Epidemiological studies have observed that the seasonal peak incidence of influenza virus infection is sometimes separate from the peak incidence of human respiratory syncytial virus (hRSV) infection, with the peak incidence of hRSV infection delayed. This is proposed to be due to viral interference, whereby infection with one virus prevents or delays infection with a different virus. We investigated viral interference between hRSV and 2009 pandemic influenza A(H1N1) virus (A[H1N1]pdm09) in the ferret model. Infection with A(H1N1)pdm09 prevented subsequent infection with hRSV. Infection with hRSV reduced morbidity attributed to infection with A(H1N1)pdm09 but not infection, even when an increased inoculum dose of hRSV was used. Notably, infection with A(H1N1)pdm09 induced higher levels of proinflammatory cytokines, chemokines, and immune mediators in the ferret than hRSV. Minimal cross-reactive serological responses or interferon γ-expressing cells were induced by either virus ≥14 days after infection. These data indicate that antigen-independent mechanisms may drive viral interference between unrelated respiratory viruses that can limit subsequent infection or disease.
  • Item
    No Preview Available
    Pandemic controllability: a concept to guide a proportionate and flexible operational response to future influenza pandemics
    McCaw, JM ; Glass, K ; Mercer, GN ; McVernon, J (OXFORD UNIV PRESS, 2014-03)
    The 2009 H1N1 influenza pandemic posed challenges for governments worldwide. Strategies designed to limit community transmission, such as antiviral deployment, were largely ineffective due to both feasibility constraints and the generally mild nature of disease, resulting in incomplete case ascertainment. Reviews of national pandemic plans have identified pandemic impact, primarily linked to measures of transmissibility and severity, as a key concept to incorporate into the next generation of plans. While an assessment of impact provides the rationale under which interventions may be warranted, it does not directly provide an assessment on whether particular interventions may be effective. Such considerations motivate our introduction of the concept of pandemic controllability. For case-targeted interventions, such as antiviral treatment and post-exposure prophylaxis, we identify the visibility and transmissibility of a pandemic as the key drivers of controllability. Taking a case-study approach, we suggest that high-impact pandemics, for which control is most desirable, are likely uncontrollable with case-targeted interventions. Strategies that do not rely on the identification of cases may prove relatively more effective. By introducing a pragmatic framework for relating the assessment of impact to the ability to mitigate an epidemic (controllability), we hope to address a present omission identified in pandemic response plans.
  • Item
    Thumbnail Image
    Assessing the utility of an anti-malarial pharmacokinetic-pharmacodynamic model for aiding drug clinical development
    Zaloumis, S ; Humberstone, A ; Charman, SA ; Price, RN ; Moehrle, J ; Gamo-Benito, J ; McCaw, J ; Jamsen, KM ; Smith, K ; Simpson, JA (BIOMED CENTRAL LTD, 2012-08-30)
    BACKGROUND: Mechanistic within-host models relating blood anti-malarial drug concentrations with the parasite-time profile help in assessing dosing schedules and partner drugs for new anti-malarial treatments. A comprehensive simulation study to assess the utility of a stage-specific pharmacokinetic-pharmacodynamic (PK-PD) model for predicting within-host parasite response was performed. METHODS: Three anti-malarial combination therapies were selected: artesunate-mefloquine, dihydroartemisinin-piperaquine, and artemether-lumefantrine. The PK-PD model included parameters to represent the concentration-time profiles of both drugs, the initial parasite burden and distribution across the parasite life cycle, and the parasite multiplication factor due to asexual reproduction. The model also included the maximal killing rate of each drug, and the blood drug concentration associated with half of that killing effect (in vivo EC50), derived from the in vitro IC50, the extent of binding to 0.5% Albumax present in the in vitro testing media, and the drugs plasma protein binding and whole blood to plasma partitioning ratio. All stochastic simulations were performed using a Latin-Hypercube-Sampling approach. RESULTS: The simulations demonstrated that the proportion of patients cured was highly sensitive to the in vivo EC50 and the maximal killing rate of the partner drug co-administered with the artemisinin derivative. The in vivo EC50 values that corresponded to on average 95% of patients cured were much higher than the adjusted values derived from the in vitro IC50. The proportion clinically cured was not strongly influenced by changes in the parameters defining the age distribution of the initial parasite burden (mean age of 4 to 16 hours) and the parasite multiplication factor every life cycle (ranging from 8 to 12 fold/cycle). The median parasite clearance times, however, lengthened as the standard deviation of the initial parasite burden increased (i.e. the infection became more asynchronous). CONCLUSIONS: This simulation study demonstrates that the PD effect predicted from in vitro growth inhibition assays does not accord well with the PD effect of the anti-malarials observed within the patient. This simulation-based PK-PD modelling approach should not be considered as a replacement to conducting clinical trials but instead as a decision tool to improve the design of a clinical trial during drug development.
  • Item
    Thumbnail Image
    Application of a case-control study design to investigate genotypic signatures of HIV-1 transmission
    Mota, TM ; Murray, JM ; Center, RJ ; Purcell, DFJ ; McCaw, JM (BMC, 2012-06-25)
    BACKGROUND: The characterization of HIV-1 transmission strains may inform the design of an effective vaccine. Shorter variable loops with fewer predicted glycosites have been suggested as signatures enriched in envelope sequences derived during acute HIV-1 infection. Specifically, a transmission-linked lack of glycosites within the V1 and V2 loops of gp120 provides greater access to an α4β7 binding motif, which promotes the establishment of infection. Also, a histidine at position 12 in the leader sequence of Env has been described as a transmission signature that is selected against during chronic infection. The purpose of this study is to measure the association of the presence of an α4β7 binding motif, the number of N-linked glycosites, the length of the variable loops, and the prevalence of histidine at position 12 with HIV-1 transmission. A case-control study design was used to measure the prevalence of these variables between subtype B and C transmission sequences and frequency-matched randomly-selected sequences derived from chronically infected controls. RESULTS: Subtype B transmission strains had shorter V3 regions than chronic strains (p = 0.031); subtype C transmission strains had shorter V1 loops than chronic strains (p = 0.047); subtype B transmission strains had more V3 loop glycosites (p = 0.024) than chronic strains. Further investigation showed that these statistically significant results were unlikely to be biologically meaningful. Also, there was no difference observed in the prevalence of a histidine at position 12 among transmission strains and controls of either subtype. CONCLUSIONS: Although a genetic bottleneck is observed after HIV-1 transmission, our results indicate that summary characteristics of Env hypothesised to be important in transmission are not divergent between transmission and chronic strains of either subtype. The success of a transmission strain to initiate infection may be a random event from the divergent pool of donor viral sequences. The characteristics explored through this study are important, but may not function as genotypic signatures of transmission as previously described.
  • Item
    Thumbnail Image
    A Mathematical Framework for Estimating Pathogen Transmission Fitness and Inoculum Size Using Data from a Competitive Mixtures Animal Model
    McCaw, JM ; Arinaminpathy, N ; Hurt, AC ; McVernon, J ; McLean, AR ; Fraser, C (PUBLIC LIBRARY SCIENCE, 2011-04)
    We present a method to measure the relative transmissibility ("transmission fitness") of one strain of a pathogen compared to another. The model is applied to data from "competitive mixtures" experiments in which animals are co-infected with a mixture of two strains. We observe the mixture in each animal over time and over multiple generations of transmission. We use data from influenza experiments in ferrets to demonstrate the approach. Assessment of the relative transmissibility between two strains of influenza is important in at least three contexts: 1) Within the human population antigenically novel strains of influenza arise and compete for susceptible hosts. 2) During a pandemic event, a novel sub-type of influenza competes with the existing seasonal strain(s). The unfolding epidemiological dynamics are dependent upon both the population's susceptibility profile and the inherent transmissibility of the novel strain compared to the existing strain(s). 3) Neuraminidase inhibitors (NAIs), while providing significant potential to reduce transmission of influenza, exert selective pressure on the virus and so promote the emergence of drug-resistant strains. Any adverse outcome due to selection and subsequent spread of an NAI-resistant strain is exquisitely dependent upon the transmission fitness of that strain. Measurement of the transmission fitness of two competing strains of influenza is thus of critical importance in determining the likely time-course and epidemiology of an influenza outbreak, or the potential impact of an intervention measure such as NAI distribution. The mathematical framework introduced here also provides an estimate for the size of the transmitted inoculum. We demonstrate the framework's behaviour using data from ferret transmission studies, and through simulation suggest how to optimise experimental design for assessment of transmissibility. The method introduced here for assessment of mixed transmission events has applicability beyond influenza, to other viral and bacterial pathogens.