School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    Estimating negative binomial parameters from occurrence data with detection times
    Hwang, W-H ; Huggins, R ; Stoklosa, J (WILEY, 2016-11)
    The negative binomial distribution is a common model for the analysis of count data in biology and ecology. In many applications, we may not observe the complete frequency count in a quadrat but only that a species occurred in the quadrat. If only occurrence data are available then the two parameters of the negative binomial distribution, the aggregation index and the mean, are not identifiable. This can be overcome by data augmentation or through modeling the dependence between quadrat occupancies. Here, we propose to record the (first) detection time while collecting occurrence data in a quadrat. We show that under what we call proportionate sampling, where the time to survey a region is proportional to the area of the region, that both negative binomial parameters are estimable. When the mean parameter is larger than two, our proposed approach is more efficient than the data augmentation method developed by Solow and Smith (, Am. Nat. 176, 96-98), and in general is cheaper to conduct. We also investigate the effect of misidentification when collecting negative binomially distributed data, and conclude that, in general, the effect can be simply adjusted for provided that the mean and variance of misidentification probabilities are known. The results are demonstrated in a simulation study and illustrated in several real examples.
  • Item
    Thumbnail Image
    Nonparametric Estimation of the Number of Drug Users in Hong Kong Using Repeated Multiple Lists
    Huggins, RM ; Yip, PSF ; Stoklosa, J (WILEY, 2016-03)
    Summary We update a previous approach to the estimation of the size of an open population when there are multiple lists at each time point. Our motivation is 35 years of longitudinal data on the detection of drug users by the Central Registry of Drug Abuse in Hong Kong. We develop a two‐stage smoothing spline approach. This gives a flexible and easily implemented alternative to the previous method which was based on kernel smoothing. The new method retains the property of reducing the variability of the individual estimates at each time point. We evaluate the new method by means of a simulation study that includes an examination of the effects of variable selection. The new method is then applied to data collected by the Central Registry of Drug Abuse. The parameter estimates obtained are compared with the well known Jolly–Seber estimates based on single capture methods.
  • Item
    No Preview Available
    A nonparametric estimation of the infection curve
    Lin, H ; Yip, PSF ; Huggins, RM (SCIENCE PRESS, 2011-09)
    Predicting the future course of an epidemic depends on being able to estimate the current numbers of infected individuals. However, while back-projection techniques allow reliable estimation of the numbers of infected individuals in the more distant past, they are less reliable in the recent past. We propose two new nonparametric methods to estimate the unobserved numbers of infected individuals in the recent past in an epidemic. The proposed methods are noniterative, easily computed and asymptotically normal with simple variance formulas. Simulations show that the proposed methods are much more robust and accurate than the existing back projection method, especially for the recent past, which is our primary interest. We apply the proposed methods to the 2003 Severe Acute Respiratory Syndorme (SARS) epidemic in Hong Kong.
  • Item
    Thumbnail Image
    Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus
    Furlan, E ; Stoklosa, J ; Griffiths, J ; Gust, N ; Ellis, R ; Huggins, RM ; Weeks, AR (WILEY, 2012-04)
    Genetic diversity generally underpins population resilience and persistence. Reductions in population size and absence of gene flow can lead to reductions in genetic diversity, reproductive fitness, and a limited ability to adapt to environmental change increasing the risk of extinction. Island populations are typically small and isolated, and as a result, inbreeding and reduced genetic diversity elevate their extinction risk. Two island populations of the platypus, Ornithorhynchus anatinus, exist; a naturally occurring population on King Island in Bass Strait and a recently introduced population on Kangaroo Island off the coast of South Australia. Here we assessed the genetic diversity within these two island populations and contrasted these patterns with genetic diversity estimates in areas from which the populations are likely to have been founded. On Kangaroo Island, we also modeled live capture data to determine estimates of population size. Levels of genetic diversity in King Island platypuses are perilously low, with eight of 13 microsatellite loci fixed, likely reflecting their small population size and prolonged isolation. Estimates of heterozygosity detected by microsatellites (H(E)= 0.032) are among the lowest level of genetic diversity recorded by this method in a naturally outbreeding vertebrate population. In contrast, estimates of genetic diversity on Kangaroo Island are somewhat higher. However, estimates of small population size and the limited founders combined with genetic isolation are likely to lead to further losses of genetic diversity through time for the Kangaroo Island platypus population. Implications for the future of these and similarly isolated or genetically depauperate populations are discussed.
  • Item
    Thumbnail Image
    A Varying Coefficient Model to Measure the Effectiveness of Mass Media Anti-Smoking Campaigns in Generating Calls to a Quitline
    Bui, QM ; Huggins, RM ; Hwang, W-H ; White, V ; Erbas, B (JAPAN EPIDEMIOLOGICAL ASSOC, 2010-11)
    BACKGROUND: Anti-smoking advertisements are an effective population-based smoking reduction strategy. The Quitline telephone service provides a first point of contact for adults considering quitting. Because of data complexity, the relationship between anti-smoking advertising placement, intensity, and time trends in total call volume is poorly understood. In this study we use a recently developed semi-varying coefficient model to elucidate this relationship. METHODS: Semi-varying coefficient models comprise parametric and nonparametric components. The model is fitted to the daily number of calls to Quitline in Victoria, Australia to estimate a nonparametric long-term trend and parametric terms for day-of-the-week effects and to clarify the relationship with target audience rating points (TARPs) for the Quit and nicotine replacement advertising campaigns. RESULTS: The number of calls to Quitline increased with the TARP value of both the Quit and other smoking cessation advertisement; the TARP values associated with the Quit program were almost twice as effective. The varying coefficient term was statistically significant for peak periods with little or no advertising. CONCLUSIONS: Semi-varying coefficient models are useful for modeling public health data when there is little or no information on other factors related to the at-risk population. These models are well suited to modeling call volume to Quitline, because the varying coefficient allowed the underlying time trend to depend on fixed covariates that also vary with time, thereby explaining more of the variation in the call model.
  • Item
    Thumbnail Image
    Sequential biases in accumulating evidence
    Kulinskaya, E ; Huggins, R ; Dogo, SH (WILEY-BLACKWELL, 2016-09)