School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    No Preview Available
    Benchmarking algorithm portfolio construction methods
    Muñoz, MA ; Soleimani, H ; Kandanaarachchi, S (Association for Computing Machinery, 2022-07-09)
    A portfolio is a set of algorithms, which run concurrently or interchangeably, whose aim is to improve performance by avoiding a bad selection of a single algorithm. Despite its high error tolerance, a carefully constructed portfolio, i.e., the smallest set of complementary algorithms, is expected to perform better than an arbitrarily constructed one. In this paper, we benchmark five algorithm portfolio construction methods, using as benchmark problems the ASLib scenarios, under a cross-validation regime. We examine the performance of each portfolio in terms of its riskiness, i.e., the existence of unsolved problems on the test set, and its robustness, i.e., the existence of an algorithm that solves most instances. The results demonstrate that two of these methods produce portfolios with the lowest risk, albeit with different levels of robustness.
  • Item
    No Preview Available
    Maximum Spatial Perturbation Consistency for Unpaired Image-to-Image Translation
    Xu, Y ; Xie, S ; Wu, W ; Zhang, K ; Gong, M ; Batmanghelich, K (IEEE COMPUTER SOC, 2022)
  • Item
    No Preview Available
  • Item
    No Preview Available
    Off-lattice and parallel implementations of the pivot algorithm
    Clisby, N ; Ho, DTC (IOP Publishing, 2021-12-09)
    Abstract The pivot algorithm is the most efficient known method for sampling polymer configurations for self-avoiding walks and related models. Here we introduce two recent improvements to an efficient binary tree implementation of the pivot algorithm: an extension to an off-lattice model, and a parallel implementation.
  • Item
    Thumbnail Image
    Logic and the 2-Simplicial Transformer
    Murfet, D ; Clift, J ; Doyrn, D ; Wallbridge, J (International Conference on Learning Representations, 2020)
    We introduce the 2-simplicial Transformer, an extension of the Transformer which includes a form of higher-dimensional attention generalising the dot-product attention, and uses this attention to update entity representations with tensor products of value vectors. We show that this architecture is a useful inductive bias for logical reasoning in the context of deep reinforcement learning.
  • Item
    No Preview Available
    Likelihood-Free Overcomplete ICA and Applications In Causal Discovery
    Chenwei, DING ; Gong, M ; Zhang, K ; Tao, D ; Wallach, H ; Larochelle, H ; Beygelzimer, A ; d'Alche-Buc, F ; Fox, E ; Garnett, R (The Neural Information Processing Systems Foundation, 2020)
    Causal discovery witnessed significant progress over the past decades. In particular, many recent causal discovery methods make use of independent, non-Gaussian noise to achieve identifiability of the causal models. Existence of hidden direct common causes, or confounders, generally makes causal discovery more difficult; whenever they are present, the corresponding causal discovery algorithms can be seen as extensions of overcomplete independent component analysis (OICA). However, existing OICA algorithms usually make strong parametric assumptions on the distribution of independent components, which may be violated on real data, leading to sub-optimal or even wrong solutions. In addition, existing OICA algorithms rely on the Expectation Maximization (EM) procedure that requires computationally expensive inference of the posterior distribution of independent components. To tackle these problems, we present a Likelihood-Free Overcomplete ICA algorithm (LFOICA) that estimates the mixing matrix directly by back-propagation without any explicit assumptions on the density function of independent components. Thanks to its computational efficiency, the proposed method makes a number of causal discovery procedures much more practically feasible. For illustrative purposes, we demonstrate the computational efficiency and efficacy of our method in two causal discovery tasks on both synthetic and real data.
  • Item
    No Preview Available
    Specific and Shared Causal Relation Modeling and Mechanism-Based Clustering
    Huang, B ; Zhang, K ; Xie, P ; Gong, M ; Xing, EP ; Glymour, C ; Wallach, H ; Larochelle, H ; Beygelzimer, A ; d'Alche-Buc, F ; Fox, E ; Garnett, R (The Neural Information Processing Systems Foundation, 2020)
    State-of-the-art approaches to causal discovery usually assume a fixed underlying causal model. However, it is often the case that causal models vary across domains or subjects, due to possibly omitted factors that affect the quantitative causal effects. As a typical example, causal connectivity in the brain network has been reported to vary across individuals, with significant differences across groups of people, such as autistics and typical controls. In this paper, we develop a unified framework for causal discovery and mechanism-based group identification. In particular, we propose a specific and shared causal model (SSCM), which takes into account the variabilities of causal relations across individuals/groups and leverages their commonalities to achieve statistically reliable estimation. The learned SSCM gives the specific causal knowledge for each individual as well as the general trend over the population. In addition, the estimated model directly provides the group information of each individual. Experimental results on synthetic and real-world data demonstrate the efficacy of the proposed method.
  • Item
    Thumbnail Image
    Twin Auxilary Classifiers GAN
    Gong, M ; Xu, Y ; Li, C ; Zhang, K ; Batmanghelich, K ; Wallach, H ; Larochelle, H ; Beygelzimer, A ; d'Alche-Buc, F ; Fox, E ; Garnett, R (The Neural Information Processing Systems Foundation, 2020)
    Conditional generative models enjoy remarkable progress over the past few years. One of the popular conditional models is Auxiliary Classifier GAN (AC-GAN), which generates highly discriminative images by extending the loss function of GAN with an auxiliary classifier. However, the diversity of the generated samples by AC-GAN tends to decrease as the number of classes increases, hence limiting its power on large-scale data. In this paper, we identify the source of the low diversity issue theoretically and propose a practical solution to solve the problem. We show that the auxiliary classifier in AC-GAN imposes perfect separability, which is disadvantageous when the supports of the class distributions have significant overlap. To address the issue, we propose Twin Auxiliary Classifiers Generative Adversarial Net (TAC-GAN) that further benefits from a new player that interacts with other players (the generator and the discriminator) in GAN. Theoretically, we demonstrate that TAC-GAN can effectively minimize the divergence between the generated and real-data distributions. Extensive experimental results show that our TAC-GAN can successfully replicate the true data distributions on simulated data, and significantly improves the diversity of class-conditional image generation on real datasets.
  • Item
    No Preview Available
    Causal Discovery from Non-Identical Variable Sets
    Huang, B ; Zhang, K ; Gong, M ; Glymour, C (Association for the Advancement of Artificial Intelligence, 2020)
    A number of approaches to causal discovery assume that there are no hidden confounders and are designed to learn a fixed causal model from a single data set. Over the last decade, with closer cooperation across laboratories, we are able to accumulate more variables and data for analysis, while each lab may only measure a subset of them, due to technical constraints or to save time and cost. This raises a question of how to handle causal discovery from multiple data sets with non-identical variable sets, and at the same time, it would be interesting to see how more recorded variables can help to mitigate the confounding problem. In this paper, we propose a principled method to uniquely identify causal relationships over the integrated set of variables from multiple data sets, in linear, non-Gaussian cases. The proposed method also allows distribution shifts across data sets. Theoretically, we show that the causal structure over the integrated set of variables is identifiable under testable conditions. Furthermore, we present two types of approaches to parameter estimation: one is based on maximum likelihood, and the other is likelihood free and leverages generative adversarial nets to improve scalability of the estimation procedure. Experimental results on various synthetic and real-world data sets are presented to demonstrate the efficacy of our methods.
  • Item
    No Preview Available
    Compressed Self-Attention for Deep Metric Learning
    Ziye, C ; Gong, M ; Xu, Y ; Wang, C ; Zhang, K ; Du, B (Association for the Advancement of Artificial Intelligence, 2020)
    In this paper, we aim to enhance self-attention (SA) mechanism for deep metric learning in visual perception, by capturing richer contextual dependencies in visual data. To this end, we propose a novel module, named compressed self-attention (CSA), which significantly reduces the computation and memory cost with a neglectable decrease in accuracy with respect to the original SA mechanism, thanks to the following two characteristics: i) it only needs to compute a small number of base attention maps for a small number of base feature vectors; and ii) the output at each spatial location can be simply obtained by an adaptive weighted average of the outputs calculated from the base attention maps. The high computational efficiency of CSA enables the application to high-resolution shallow layers in convolutional neural networks with little additional cost. In addition, CSA makes it practical to further partition the feature maps into groups along the channel dimension and compute attention maps for features in each group separately, thus increasing the diversity of long-range dependencies and accordingly boosting the accuracy. We evaluate the performance of CSA via extensive experiments on two metric learning tasks: person re-identification and local descriptor learning. Qualitative and quantitative comparisons with latest methods demonstrate the significance of CSA in this topic.