School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 12
  • Item
    Thumbnail Image
    A Mathematical Framework for Estimating Pathogen Transmission Fitness and Inoculum Size Using Data from a Competitive Mixtures Animal Model
    McCaw, JM ; Arinaminpathy, N ; Hurt, AC ; McVernon, J ; McLean, AR ; Fraser, C (PUBLIC LIBRARY SCIENCE, 2011-04)
    We present a method to measure the relative transmissibility ("transmission fitness") of one strain of a pathogen compared to another. The model is applied to data from "competitive mixtures" experiments in which animals are co-infected with a mixture of two strains. We observe the mixture in each animal over time and over multiple generations of transmission. We use data from influenza experiments in ferrets to demonstrate the approach. Assessment of the relative transmissibility between two strains of influenza is important in at least three contexts: 1) Within the human population antigenically novel strains of influenza arise and compete for susceptible hosts. 2) During a pandemic event, a novel sub-type of influenza competes with the existing seasonal strain(s). The unfolding epidemiological dynamics are dependent upon both the population's susceptibility profile and the inherent transmissibility of the novel strain compared to the existing strain(s). 3) Neuraminidase inhibitors (NAIs), while providing significant potential to reduce transmission of influenza, exert selective pressure on the virus and so promote the emergence of drug-resistant strains. Any adverse outcome due to selection and subsequent spread of an NAI-resistant strain is exquisitely dependent upon the transmission fitness of that strain. Measurement of the transmission fitness of two competing strains of influenza is thus of critical importance in determining the likely time-course and epidemiology of an influenza outbreak, or the potential impact of an intervention measure such as NAI distribution. The mathematical framework introduced here also provides an estimate for the size of the transmitted inoculum. We demonstrate the framework's behaviour using data from ferret transmission studies, and through simulation suggest how to optimise experimental design for assessment of transmissibility. The method introduced here for assessment of mixed transmission events has applicability beyond influenza, to other viral and bacterial pathogens.
  • Item
    Thumbnail Image
    Household transmission of respiratory viruses - assessment of viral, individual and household characteristics in a population study of healthy Australian adults
    McCaw, JM ; Howard, PF ; Richmond, PC ; Nissen, M ; Sloots, T ; Lambert, SB ; Lai, M ; Greenberg, M ; Nolan, T ; McVernon, J (BMC, 2012-12-11)
    BACKGROUND: Household transmission of influenza-like illness (ILI) may vary with viral and demographic characteristics. We examined the effect of these factors in a population-based sample of adults with ILI. METHODS: We conducted a prospective cohort study in community-dwelling Australian adults nested within an influenza vaccine effectiveness trial. On presentation with ILI, participants were swabbed for a range of respiratory viruses and asked to return a questionnaire collecting details of household members with or without similar symptoms. We used logistic and Poisson regression to assess the key characteristics of household transmission. RESULTS: 258 participants from multi-occupancy households experienced 279 ILI episodes and returned a questionnaire. Of these, 183 were the primary case in the household allowing assessment of factors associated with transmission. Transmission was significantly associated in univariate analyses with female sex (27% vs. 13%, risk ratio (RR) = 2.13 (1.08, 4.21)) and the presence of a child in the house (33% vs. 17%, RR = 1.90 (1.11, 3.26)). The secondary household attack proportion (SHAP) was 0.14, higher if influenza was isolated (RR = 2.1 (1.0, 4.5)). Vaccinated participants who nonetheless became infected with influenza had a higher SHAP (Incidence RR = 5.24 (2.17, 12.6)). CONCLUSIONS: The increased SHAP in households of vaccinated participants who nonetheless had confirmed influenza infection supports the hypothesis that in years of vaccine mismatch, not only is influenza vaccine less protective for the vaccine recipient, but that the population's immunity is also lower.
  • Item
    Thumbnail Image
    Prior immunity helps to explain wave-like behaviour of pandemic influenza in 1918-9
    Mathews, JD ; McBryde, ES ; McVernon, J ; Pallaghy, PK ; McCaw, JM (BMC, 2010-05-25)
    BACKGROUND: The ecology of influenza may be more complex than is usually assumed. For example, despite multiple waves in the influenza pandemic of 1918-19, many people in urban locations were apparently unaffected. Were they unexposed, or protected by pre-existing cross-immunity in the first wave, by acquired immunity in later waves, or were their infections asymptomatic? METHODS: We modelled all these possibilities to estimate parameters to best explain patterns of repeat attacks in 24,706 individuals potentially exposed to summer, autumn and winter waves in 12 English populations during the 1918-9 pandemic. RESULTS: Before the summer wave, we estimated that only 52% of persons (95% credibility estimates 41-66%) were susceptible, with the remainder protected by prior immunity. Most people were exposed, as virus transmissibility was high with R0 credibility estimates of 3.10-6.74. Because of prior immunity, estimates of effective R at the start of the summer wave were lower at 1.57-3.96. Only 25-66% of exposed and susceptible persons reported symptoms. After each wave, 33-65% of protected persons became susceptible again before the next wave through waning immunity or antigenic drift. Estimated rates of prior immunity were less in younger populations (19-59%) than in adult populations (38-66%), and tended to lapse more frequently in the young (49-92%) than in adults (34-76%). CONCLUSIONS: Our model for pandemic influenza in 1918-9 suggests that pre-existing immune protection, presumably induced by prior exposure to seasonal influenza, may have limited the pandemic attack-rate in urban populations, while the waning of that protection likely contributed to recurrence of pandemic waves in exposed cities. In contrast, in isolated populations, pandemic attack rates in 1918-9 were much higher than in cities, presumably because prior immunity was less in populations with infrequent prior exposure to seasonal influenza. Although these conclusions cannot be verified by direct measurements of historical immune mechanisms, our modelling inferences from 1918-9 suggest that the spread of the influenza A (H1N1) 2009 pandemic has also been limited by immunity from prior exposure to seasonal influenza. Components of that immunity, which are measurable, may be short-lived, and not necessarily correlated with levels of HI antibody.
  • Item
    Thumbnail Image
    Comparison of three methods for ascertainment of contact information relevant to respiratory pathogen transmission in encounter networks
    McCaw, JM ; Forbes, K ; Nathan, PM ; Pattison, PE ; Robins, GL ; Nolan, TM ; McVernon, J (BMC, 2010-06-10)
    BACKGROUND: Mathematical models of infection that consider targeted interventions are exquisitely dependent on the assumed mixing patterns of the population. We report on a pilot study designed to assess three different methods (one retrospective, two prospective) for obtaining contact data relevant to the determination of these mixing patterns. METHODS: 65 adults were asked to record their social encounters in each location visited during 6 study days using a novel method whereby a change in physical location of the study participant triggered data entry. Using a cross-over design, all participants recorded encounters on 3 days in a paper diary and 3 days using an electronic recording device (PDA). Participants were randomised to first prospective recording method. RESULTS: Both methods captured more contacts than a pre-study questionnaire, but ascertainment using the paper diary was superior to the PDA (mean difference: 4.52 (95% CI 0.28, 8.77). Paper diaries were found more acceptable to the participants compared with the PDA. Statistical analysis confirms that our results are broadly consistent with those reported from large-scale European based surveys. An association between household size (trend 0.14, 95% CI (0.06, 0.22), P < 0.001) and composition (presence of child 0.37, 95% CI (0.17, 0.56), P < 0.001) and the total number of reported contacts was observed, highlighting the importance of sampling study populations based on household characteristics as well as age. New contacts were still being recorded on the third study day, but compliance had declined, indicating that the optimal number of sample days represents a trade-off between completeness and quality of data for an individual. CONCLUSIONS: The study's location-based reporting design allows greater scope compared to other methods for examining differences in the characteristics of encounters over a range of environments. Improved parameterisation of dynamic transmission models gained from work of this type will aid in the development of more robust decision support tools to assist health policy makers and planners.
  • Item
    Thumbnail Image
    Impact of Emerging Antiviral Drug Resistance on Influenza Containment and Spread: Influence of Subclinical Infection and Strategic Use of a Stockpile Containing One or Two Drugs
    McCaw, JM ; Wood, JG ; McCaw, CT ; McVernon, J ; Montgomery, JM (PUBLIC LIBRARY SCIENCE, 2008-06-04)
    BACKGROUND: Wide-scale use of antiviral agents in the event of an influenza pandemic is likely to promote the emergence of drug resistance, with potentially deleterious effects for outbreak control. We explored factors promoting resistance within a dynamic infection model, and considered ways in which one or two drugs might be distributed to delay the spread of resistant strains or mitigate their impact. METHODS AND FINDINGS: We have previously developed a novel deterministic model of influenza transmission that simulates treatment and targeted contact prophylaxis, using a limited stockpile of antiviral agents. This model was extended to incorporate subclinical infections, and the emergence of resistant virus strains under the selective pressure imposed by various uses of one or two antiviral agents. For a fixed clinical attack rate, R(0) rises with the proportion of subclinical infections thus reducing the number of infections amenable to treatment or prophylaxis. In consequence, outbreak control is more difficult, but emergence of drug resistance is relatively uncommon. Where an epidemic may be constrained by use of a single antiviral agent, strategies that combine treatment and prophylaxis are most effective at controlling transmission, at the cost of facilitating the spread of resistant viruses. If two drugs are available, using one drug for treatment and the other for prophylaxis is more effective at preventing propagation of mutant strains than either random allocation or drug cycling strategies. Our model is relatively straightforward, and of necessity makes a number of simplifying assumptions. Our results are, however, consistent with the wider body of work in this area and are able to place related research in context while extending the analysis of resistance emergence and optimal drug use within the constraints of a finite drug stockpile. CONCLUSIONS: Combined treatment and prophylaxis represents optimal use of antiviral agents to control transmission, at the cost of drug resistance. Where two drugs are available, allocating different drugs to cases and contacts is likely to be most effective at constraining resistance emergence in a pandemic scenario.
  • Item
    Thumbnail Image
    Diagnosis and Antiviral Intervention Strategies for Mitigating an Influenza Epidemic
    Moss, R ; McCaw, JM ; McVernon, J ; Davis, CT (PUBLIC LIBRARY SCIENCE, 2011-02-04)
    BACKGROUND: Many countries have amassed antiviral stockpiles for pandemic preparedness. Despite extensive trial data and modelling studies, it remains unclear how to make optimal use of antiviral stockpiles within the constraints of healthcare infrastructure. Modelling studies informed recommendations for liberal antiviral distribution in the pandemic phase, primarily to prevent infection, but failed to account for logistical constraints clearly evident during the 2009 H1N1 outbreaks. Here we identify optimal delivery strategies for antiviral interventions accounting for logistical constraints, and so determine how to improve a strategy's impact. METHODS AND FINDINGS: We extend an existing SEIR model to incorporate finite diagnostic and antiviral distribution capacities. We evaluate the impact of using different diagnostic strategies to decide to whom antivirals are delivered. We then determine what additional capacity is required to achieve optimal impact. We identify the importance of sensitive and specific case ascertainment in the early phase of a pandemic response, when the proportion of false-positive presentations may be high. Once a substantial percentage of ILI presentations are caused by the pandemic strain, identification of cases for treatment on syndromic grounds alone results in a greater potential impact than a laboratory-dependent strategy. Our findings reinforce the need for a decentralised system capable of providing timely prophylaxis. CONCLUSIONS: We address specific real-world issues that must be considered in order to improve pandemic preparedness policy in a practical and methodologically sound way. Provision of antivirals on the scale proposed for an effective response is infeasible using traditional public health outbreak management and contact tracing approaches. The results indicate to change the transmission dynamics of an influenza epidemic with an antiviral intervention, a decentralised system is required for contact identification and prophylaxis delivery, utilising a range of existing services and infrastructure in a "whole of society" response.
  • Item
    Thumbnail Image
    Likely effectiveness of pharmaceutical and non-pharmaceutical interventions for mitigating influenza virus transmission in Mongolia
    Bolton, KJ ; McCaw, JM ; Moss, R ; Morris, RS ; Wang, S ; Burma, A ; Darma, B ; Narangerel, D ; Nymadawa, P ; McVernon, J (WORLD HEALTH ORGANIZATION, 2012-04)
    OBJECTIVE: To assess the likely benefit of the interventions under consideration for use in Mongolia during future influenza pandemics. METHODS: A stochastic, compartmental patch model of susceptibility, exposure, infection and recovery was constructed to capture the key effects of several interventions--travel restrictions, school closure, generalized social distancing, quarantining of close contacts, treatment of cases with antivirals and prophylaxis of contacts--on the dynamics of influenza epidemics. The likely benefit and optimal timing and duration of each of these interventions were assessed using Latin-hypercube sampling techniques, averaging across many possible transmission and social mixing parameters. FINDINGS: Timely interventions could substantially alter the time-course and reduce the severity of pandemic influenza in Mongolia. In a moderate pandemic scenario, early social distancing measures decreased the mean attack rate from around 10% to 7-8%. Similarly, in a severe pandemic scenario such measures cut the mean attack rate from approximately 23% to 21%. In both moderate and severe pandemic scenarios, a suite of non-pharmaceutical interventions proved as effective as the targeted use of antivirals. Targeted antiviral campaigns generally appeared more effective in severe pandemic scenarios than in moderate pandemic scenarios. CONCLUSION: A mathematical model of pandemic influenza transmission in Mongolia indicated that, to be successful, interventions to prevent transmission must be triggered when the first cases are detected in border regions. If social distancing measures are introduced at this stage and implemented over several weeks, they may have a notable mitigating impact. In low-income regions such as Mongolia, social distancing may be more effective than the large-scale use of antivirals.
  • Item
    Thumbnail Image
    Influence of Contact Definitions in Assessment of the Relative Importance of Social Settings in Disease Transmission Risk
    Bolton, KJ ; McCaw, JM ; Forbes, K ; Nathan, P ; Robins, G ; Pattison, P ; Nolan, T ; McVernon, J ; Jefferson, T (PUBLIC LIBRARY SCIENCE, 2012-02-16)
    BACKGROUND: Realistic models of disease transmission incorporating complex population heterogeneities require input from quantitative population mixing studies. We use contact diaries to assess the relative importance of social settings in respiratory pathogen spread using three measures of person contact hours (PCH) as proxies for transmission risk with an aim to inform bipartite network models of respiratory pathogen transmission. METHODS AND FINDINGS: Our survey examines the contact behaviour for a convenience sample of 65 adults, with each encounter classified as occurring in a work, retail, home, social, travel or "other" setting. The diary design allows for extraction of PCH-interaction (cumulative time in face-face conversational or touch interaction with contacts)--analogous to the contact measure used in several existing surveys--as well as PCH-setting (product of time spent in setting and number of people present) and PCH-reach (product of time spent in setting and number of people in close proximity). Heterogeneities in day-dependent distribution of risk across settings are analysed using partitioning and cluster analyses and compared between days and contact measures. Although home is typically the highest-risk setting when PCH measures isolate two-way interactions, its relative importance compared to social and work settings may reduce when adopting a more inclusive contact measure that considers the number and duration of potential exposure events. CONCLUSIONS: Heterogeneities in location-dependent contact behaviour as measured by contact diary studies depend on the adopted contact definition. We find that contact measures isolating face-face conversational or touch interactions suggest that contact in the home dominates, whereas more inclusive contact measures indicate that home and work settings may be of higher importance. In the absence of definitive knowledge of the contact required to facilitate transmission of various respiratory pathogens, it is important for surveys to consider alternative contact measures.
  • Item
    Thumbnail Image
    A Biological Model for Influenza Transmission: Pandemic Planning Implications of Asymptomatic Infection and Immunity
    Mathews, JD ; McCaw, CT ; McVernon, J ; McBryde, ES ; McCaw, JM ; Monk, N (PUBLIC LIBRARY SCIENCE, 2007-11-28)
    BACKGROUND: The clinical attack rate of influenza is influenced by prior immunity and mixing patterns in the host population, and also by the proportion of infections that are asymptomatic. This complexity makes it difficult to directly estimate R(0) from the attack rate, contributing to uncertainty in epidemiological models to guide pandemic planning. We have modelled multiple wave outbreaks of influenza from different populations to allow for changing immunity and asymptomatic infection and to make inferences about R(0). DATA AND METHODS: On the island of Tristan da Cunha (TdC), 96% of residents reported illness during an H3N2 outbreak in 1971, compared with only 25% of RAF personnel in military camps during the 1918 H1N1 pandemic. Monte Carlo Markov Chain (MCMC) methods were used to estimate model parameter distributions. FINDINGS: We estimated that most islanders on TdC were non-immune (susceptible) before the first wave, and that almost all exposures of susceptible persons caused symptoms. The median R(0) of 6.4 (95% credibility interval 3.7-10.7) implied that most islanders were exposed twice, although only a minority became ill in the second wave because of temporary protection following the first wave. In contrast, only 51% of RAF personnel were susceptible before the first wave, and only 38% of exposed susceptibles reported symptoms. R(0) in this population was also lower [2.9 (2.3-4.3)], suggesting reduced viral transmission in a partially immune population. INTERPRETATION: Our model implies that the RAF population was partially protected before the summer pandemic wave of 1918, arguably because of prior exposure to interpandemic influenza. Without such protection, each symptomatic case of influenza would transmit to between 2 and 10 new cases, with incidence initially doubling every 1-2 days. Containment of a novel virus could be more difficult than hitherto supposed.
  • Item
    Thumbnail Image
    Understanding influenza transmission, immunity and pandemic threats
    Mathews, JD ; Chesson, JM ; McCaw, JM ; McVernon, J (WILEY, 2009-07)
    The current pandemic threat can be best understood within an ecological framework that takes account of the history of past pandemics caused by influenza A, the relationships between pandemic and seasonal spread of influenza viruses, and the importance of immunity and behavioural responses in human populations. Isolated populations without recent exposure to seasonal influenza seem more susceptible to new pandemic viruses, and much collateral evidence suggests that this is due to immunity directed against epitopes shared between pandemic and previously circulating strains of inter-pandemic influenza A virus. In the highly connected modern world, most populations are regularly exposed to non-pandemic viruses, which can even boost immunity without causing influenza symptoms. Such naturally-induced immunity helps to explain the low attack-rates of seasonal influenza, as well as the moderate attack-rates in many urbanized populations affected by 1918-1919 and later pandemics. The effectiveness of immunity, even against seasonal influenza, diminishes over time because of antigenic drift in circulating viruses and waning of post-exposure immune responses. Epidemiological evidence suggests that cross-protection against a new pandemic strain could fade even faster. Nevertheless, partial protection, even of short duration, induced by prior seasonal influenza or vaccination against it, could provide important protection in the early stages of a new pandemic.