School of Mathematics and Statistics - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    No Preview Available
    Gata-3 Negatively Regulates the Tumor-Initiating Capacity of Mammary Luminal Progenitor Cells and Targets the Putative Tumor Suppressor Caspase-14
    Asselin-Labat, M-L ; Sutherland, KD ; Vaillant, F ; Gyorki, DE ; Wu, D ; Holroyd, S ; Breslin, K ; Ward, T ; Shi, W ; Bath, ML ; Deb, S ; Fox, SB ; Smyth, GK ; Lindeman, GJ ; Visvader, JE (AMER SOC MICROBIOLOGY, 2011-11)
    The transcription factor Gata-3 is a definitive marker of luminal breast cancers and a key regulator of mammary morphogenesis. Here we have explored a role for Gata-3 in tumor initiation and the underlying cellular mechanisms using a mouse model of "luminal-like" cancer. Loss of a single Gata-3 allele markedly accelerated tumor progression in mice carrying the mouse mammary tumor virus promoter-driven polyomavirus middle T antigen (MMTV-PyMT mice), while overexpression of Gata-3 curtailed tumorigenesis. Through the identification of two distinct luminal progenitor cells in the mammary gland, we demonstrate that Gata-3 haplo-insufficiency increases the tumor-initiating capacity of these progenitors but not the stem cell-enriched population. Overexpression of a conditional Gata-3 transgene in the PyMT model promoted cellular differentiation and led to reduced tumor-initiating capacity as well as diminished angiogenesis. Transcript profiling studies identified caspase-14 as a novel downstream target of Gata-3, in keeping with its roles in differentiation and tumorigenesis. A strong association was evident between GATA-3 and caspase-14 expression in preinvasive ductal carcinoma in situ samples, where GATA-3 also displayed prognostic significance. Overall, these studies identify GATA-3 as an important regulator of tumor initiation through its ability to promote the differentiation of committed luminal progenitor cells.
  • Item
    Thumbnail Image
    Deregulation of MYCN, LIN28B and LET7 in a Molecular Subtype of Aggressive High-Grade Serous Ovarian Cancers
    Helland, A ; Anglesio, MS ; George, J ; Cowin, PA ; Johnstone, CN ; House, CM ; Sheppard, KE ; Etemadmoghadam, D ; Melnyk, N ; Rustgi, AK ; Phillips, WA ; Johnsen, H ; Holm, R ; Kristensen, GB ; Birrer, MJ ; Pearson, RB ; Borresen-Dale, A-L ; Huntsman, DG ; deFazio, A ; Creighton, CJ ; Smyth, GK ; Bowtell, DDL ; Tan, P (PUBLIC LIBRARY SCIENCE, 2011-04-13)
    Molecular subtypes of serous ovarian cancer have been recently described. Using data from independent datasets including over 900 primary tumour samples, we show that deregulation of the Let-7 pathway is specifically associated with the C5 molecular subtype of serous ovarian cancer. DNA copy number and gene expression of HMGA2, alleles of Let-7, LIN28, LIN28B, MYC, MYCN, DICER1, and RNASEN were measured using microarray and quantitative reverse transcriptase PCR. Immunohistochemistry was performed on 127 samples using tissue microarrays and anti-HMGA2 antibodies. Fluorescence in situ hybridisation of bacterial artificial chromosomes hybridized to 239 ovarian tumours was used to measure translocation at the LIN28B locus. Short interfering RNA knockdown in ovarian cell lines was used to test the functionality of associations observed. Four molecular subtypes (C1, C2, C4, C5) of high-grade serous ovarian cancers were robustly represented in each dataset and showed similar pattern of patient survival. We found highly specific activation of a pathway involving MYCN, LIN28B, Let-7 and HMGA2 in the C5 molecular subtype defined by MYCN amplification and over-expression, over-expression of MYCN targets including the Let-7 repressor LIN28B, loss of Let-7 expression and HMGA2 amplification and over-expression. DICER1, a known Let-7 target, and RNASEN were over-expressed in C5 tumours. We saw no evidence of translocation at the LIN28B locus in C5 tumours. The reported interaction between LIN28B and Let-7 was recapitulated by siRNA knockdown in ovarian cancer cell lines. Our results associate deregulation of MYCN and downstream targets, including Let-7 and oncofetal genes, with serous ovarian cancer. We define for the first time how elements of an oncogenic pathway, involving multiple genes that contribute to stem cell renewal, is specifically altered in a molecular subtype of serous ovarian cancer. By defining the drivers of a molecular subtype of serous ovarian cancers we provide a novel strategy for targeted therapeutic intervention.
  • Item
    Thumbnail Image
    Gene Network Disruptions and Neurogenesis Defects in the Adult Ts1Cje Mouse Model of Down Syndrome
    Hewitt, CA ; Ling, K-H ; Merson, TD ; Simpson, KM ; Ritchie, ME ; King, SL ; Pritchard, MA ; Smyth, GK ; Thomas, T ; Scott, HS ; Voss, AK ; Aziz, SA (PUBLIC LIBRARY SCIENCE, 2010-07-16)
    BACKGROUND: Down syndrome (DS) individuals suffer mental retardation with further cognitive decline and early onset Alzheimer's disease. METHODOLOGY/PRINCIPAL FINDINGS: To understand how trisomy 21 causes these neurological abnormalities we investigated changes in gene expression networks combined with a systematic cell lineage analysis of adult neurogenesis using the Ts1Cje mouse model of DS. We demonstrated down regulation of a number of key genes involved in proliferation and cell cycle progression including Mcm7, Brca2, Prim1, Cenpo and Aurka in trisomic neurospheres. We found that trisomy did not affect the number of adult neural stem cells but resulted in reduced numbers of neural progenitors and neuroblasts. Analysis of differentiating adult Ts1Cje neural progenitors showed a severe reduction in numbers of neurons produced with a tendency for less elaborate neurites, whilst the numbers of astrocytes was increased. CONCLUSIONS/SIGNIFICANCE: We have shown that trisomy affects a number of elements of adult neurogenesis likely to result in a progressive pathogenesis and consequently providing the potential for the development of therapies to slow progression of, or even ameliorate the neuronal deficits suffered by DS individuals.
  • Item
    Thumbnail Image
    Technical Variability Is Greater than Biological Variability in a Microarray Experiment but Both Are Outweighed by Changes Induced by Stimulation
    Bryant, PA ; Smyth, GK ; Robins-Browne, R ; Curtis, N ; Khodursky, AB (PUBLIC LIBRARY SCIENCE, 2011-05-31)
    INTRODUCTION: A central issue in the design of microarray-based analysis of global gene expression is that variability resulting from experimental processes may obscure changes resulting from the effect being investigated. This study quantified the variability in gene expression at each level of a typical in vitro stimulation experiment using human peripheral blood mononuclear cells (PBMC). The primary objective was to determine the magnitude of biological and technical variability relative to the effect being investigated, namely gene expression changes resulting from stimulation with lipopolysaccharide (LPS). METHODS AND RESULTS: Human PBMC were stimulated in vitro with LPS, with replication at 5 levels: 5 subjects each on 2 separate days with technical replication of LPS stimulation, amplification and hybridisation. RNA from samples stimulated with LPS and unstimulated samples were hybridised against common reference RNA on oligonucleotide microarrays. There was a closer correlation in gene expression between replicate hybridisations (0.86-0.93) than between different subjects (0.66-0.78). Deconstruction of the variability at each level of the experimental process showed that technical variability (standard deviation (SD) 0.16) was greater than biological variability (SD 0.06), although both were low (SD<0.1 for all individual components). There was variability in gene expression both at baseline and after stimulation with LPS and proportion of cell subsets in PBMC was likely partly responsible for this. However, gene expression changes after stimulation with LPS were much greater than the variability from any source, either individually or combined. CONCLUSIONS: Variability in gene expression was very low and likely to improve further as technical advances are made. The finding that stimulation with LPS has a markedly greater effect on gene expression than the degree of variability provides confidence that microarray-based studies can be used to detect changes in gene expression of biological interest in infectious diseases.
  • Item
    Thumbnail Image
    Copy Number Analysis Identifies Novel Interactions Between Genomic Loci in Ovarian Cancer
    Gorringe, KL ; George, J ; Anglesio, MS ; Ramakrishna, M ; Etemadmoghadam, D ; Cowin, P ; Sridhar, A ; Williams, LH ; Boyle, SE ; Yanaihara, N ; Okamoto, A ; Urashima, M ; Smyth, GK ; Campbell, IG ; Bowtell, DDL ; Jordan, IK (PUBLIC LIBRARY SCIENCE, 2010-09-10)
    Ovarian cancer is a heterogeneous disease displaying complex genomic alterations, and consequently, it has been difficult to determine the most relevant copy number alterations with the scale of studies to date. We obtained genome-wide copy number alteration (CNA) data from four different SNP array platforms, with a final data set of 398 ovarian tumours, mostly of the serous histological subtype. Frequent CNA aberrations targeted many thousands of genes. However, high-level amplicons and homozygous deletions enabled filtering of this list to the most relevant. The large data set enabled refinement of minimal regions and identification of rare amplicons such as at 1p34 and 20q11. We performed a novel co-occurrence analysis to assess cooperation and exclusivity of CNAs and analysed their relationship to patient outcome. Positive associations were identified between gains on 19 and 20q, gain of 20q and loss of X, and between several regions of loss, particularly 17q. We found weak correlations of CNA at genomic loci such as 19q12 with clinical outcome. We also assessed genomic instability measures and found a correlation of the number of higher amplitude gains with poorer overall survival. By assembling the largest collection of ovarian copy number data to date, we have been able to identify the most frequent aberrations and their interactions.
  • Item
    Thumbnail Image
    Id2 expression delineates differential checkpoints in the genetic program of CD8α+ and CD103+ dendritic cell lineages
    Jackson, JT ; Hu, Y ; Liu, R ; Masson, F ; D'Amico, A ; Carotta, S ; Xin, A ; Camilleri, MJ ; Mount, AM ; Kallies, A ; Wu, L ; Smyth, GK ; Nutt, SL ; Belz, GT (WILEY, 2011-07-06)
    Dendritic cells (DCs) have critical roles in the induction of the adaptive immune response. The transcription factors Id2, Batf3 and Irf-8 are required for many aspects of murine DC differentiation including development of CD8α(+) and CD103(+) DCs. How they regulate DC subset specification is not completely understood. Using an Id2-GFP reporter system, we show that Id2 is broadly expressed in all cDC subsets with the highest expression in CD103(+) and CD8α(+) lineages. Notably, CD103(+) DCs were the only DC able to constitutively cross-present cell-associated antigens in vitro. Irf-8 deficiency affected loss of development of virtually all conventional DCs (cDCs) while Batf3 deficiency resulted in the development of Sirp-α(-) DCs that had impaired survival. Exposure to GM-CSF during differentiation induced expression of CD103 in Id2-GFP(+) DCs. It did not restore cross-presenting capacity to Batf3(-/-) or CD103(-)Sirp-α(-)DCs in vitro. Thus, Irf-8 and Batf3 regulate distinct stages in DC differentiation during the development of cDCs. Genetic mapping DC subset differentiation using Id2-GFP may have broad implications in understanding the interplay of DC subsets during protective and pathological immune responses.
  • Item
    Thumbnail Image
    Amplicon-Dependent CCNE1 Expression Is Critical for Clonogenic Survival after Cisplatin Treatment and Is Correlated with 20q11 Gain in Ovarian Cancer
    Etemadmoghadam, D ; George, J ; Cowin, PA ; Cullinane, C ; Kansara, M ; Gorringe, KL ; Smyth, GK ; Bowtell, DDL ; Wong, N (PUBLIC LIBRARY SCIENCE, 2010-11-12)
    Genomic amplification of 19q12 occurs in several cancer types including ovarian cancer where it is associated with primary treatment failure. We systematically attenuated expression of genes within the minimally defined 19q12 region in ovarian cell lines using short-interfering RNAs (siRNA) to identify driver oncogene(s) within the amplicon. Knockdown of CCNE1 resulted in G1/S phase arrest, reduced cell viability and apoptosis only in amplification-carrying cells. Although CCNE1 knockdown increased cisplatin resistance in short-term assays, clonogenic survival was inhibited after treatment. Gain of 20q11 was highly correlated with 19q12 amplification and spanned a 2.5 Mb region including TPX2, a centromeric protein required for mitotic spindle function. Expression of TPX2 was highly correlated with gene amplification and with CCNE1 expression in primary tumors. siRNA inhibition of TPX2 reduced cell viability but this effect was not amplicon-dependent. These findings demonstrate that CCNE1 is a key driver in the 19q12 amplicon required for survival and clonogenicity in cells with locus amplification. Co-amplification at 19q12 and 20q11 implies the presence of a cooperative mutational network. These observations have implications for the application of targeted therapies in CCNE1 dependent ovarian cancers.
  • Item
    Thumbnail Image
    Estimating the proportion of microarray probes expressed in an RNA sample
    Shi, W ; de Graaf, CA ; Kinkel, SA ; Achtman, AH ; Baldwin, T ; Schofield, L ; Scott, HS ; Hilton, DJ ; Smyth, GK (OXFORD UNIV PRESS, 2010-04)
    A fundamental question in microarray analysis is the estimation of the number of expressed probes in different RNA samples. Negative control probes available in the latest microarray platforms, such as Illumina whole genome expression BeadChips, provide a unique opportunity to estimate the number of expressed probes without setting a threshold. A novel algorithm was proposed in this study to estimate the number of expressed probes in an RNA sample by utilizing these negative controls to measure background noise. The performance of the algorithm was demonstrated by comparing different generations of Illumina BeadChips, comparing the set of probes targeting well-characterized RefSeq NM transcripts with other probes on the array and comparing pure samples with heterogenous samples. Furthermore, hematopoietic stem cells were found to have a larger transcriptome than progenitor cells. Aire knockout medullary thymic epithelial cells were shown to have significantly less expressed probes than matched wild-type cells.
  • Item
    Thumbnail Image
    Transcriptome analyses of mouse and human mammary cell subpopulations reveal multiple conserved genes and pathways
    Lim, E ; Wu, D ; Pal, B ; Bouras, T ; Asselin-Labat, M-L ; Vaillant, F ; Yagita, H ; Lindeman, GJ ; Smyth, GK ; Visvader, JE (BMC, 2010)
    INTRODUCTION: Molecular characterization of the normal epithelial cell types that reside in the mammary gland is an important step toward understanding pathways that regulate self-renewal, lineage commitment, and differentiation along the hierarchy. Here we determined the gene expression signatures of four distinct subpopulations isolated from the mouse mammary gland. The epithelial cell signatures were used to interrogate mouse models of mammary tumorigenesis and to compare with their normal human counterpart subsets to identify conserved genes and networks. METHODS: RNA was prepared from freshly sorted mouse mammary cell subpopulations (mammary stem cell (MaSC)-enriched, committed luminal progenitor, mature luminal and stromal cell) and used for gene expression profiling analysis on the Illumina platform. Gene signatures were derived and compared with those previously reported for the analogous normal human mammary cell subpopulations. The mouse and human epithelial subset signatures were then subjected to Ingenuity Pathway Analysis (IPA) to identify conserved pathways. RESULTS: The four mouse mammary cell subpopulations exhibited distinct gene signatures. Comparison of these signatures with the molecular profiles of different mouse models of mammary tumorigenesis revealed that tumors arising in MMTV-Wnt-1 and p53-/- mice were enriched for MaSC-subset genes, whereas the gene profiles of MMTV-Neu and MMTV-PyMT tumors were most concordant with the luminal progenitor cell signature. Comparison of the mouse mammary epithelial cell signatures with their human counterparts revealed substantial conservation of genes, whereas IPA highlighted a number of conserved pathways in the three epithelial subsets. CONCLUSIONS: The conservation of genes and pathways across species further validates the use of the mouse as a model to study mammary gland development and highlights pathways that are likely to govern cell-fate decisions and differentiation. It is noteworthy that many of the conserved genes in the MaSC population have been considered as epithelial-mesenchymal transition (EMT) signature genes. Therefore, the expression of these genes in tumor cells may reflect basal epithelial cell characteristics and not necessarily cells that have undergone an EMT. Comparative analyses of normal mouse epithelial subsets with murine tumor models have implicated distinct cell types in contributing to tumorigenesis in the different models.
  • Item
    Thumbnail Image
    Pro-Inflammatory CD11c+CD206+ Adipose Tissue Macrophages Are Associated With Insulin Resistance in Human Obesity
    Wentworth, JM ; Naselli, G ; Brovvn, WA ; Doyle, L ; Phipson, B ; Smyth, GK ; Wabitsch, M ; O'Brien, PE ; Harrison, LC (AMER DIABETES ASSOC, 2010-07)
    OBJECTIVE: Insulin resistance and other features of the metabolic syndrome have been causally linked to adipose tissue macrophages (ATMs) in mice with diet-induced obesity. We aimed to characterize macrophage phenotype and function in human subcutaneous and omental adipose tissue in relation to insulin resistance in obesity. RESEARCH DESIGN AND METHODS: Adipose tissue was obtained from lean and obese women undergoing bariatric surgery. Metabolic markers were measured in fasting serum and ATMs characterized by immunohistology, flow cytometry, and tissue culture studies. RESULTS ATMs comprised CD11c(+)CD206(+) cells in "crown" aggregates and solitary CD11c(-)CD206(+) cells at adipocyte junctions. In obese women, CD11c(+) ATM density was greater in subcutaneous than omental adipose tissue and correlated with markers of insulin resistance. CD11c(+) ATMs were distinguished by high expression of integrins and antigen presentation molecules; interleukin (IL)-1beta, -6, -8, and -10; tumor necrosis factor-alpha; and CC chemokine ligand-3, indicative of an activated, proinflammatory state. In addition, CD11c(+) ATMs were enriched for mitochondria and for RNA transcripts encoding mitochondrial, proteasomal, and lysosomal proteins, fatty acid metabolism enzymes, and T-cell chemoattractants, whereas CD11c(-) ATMs were enriched for transcripts involved in tissue maintenance and repair. Tissue culture medium conditioned by CD11c(+) ATMs, but not CD11c(-) ATMs or other stromovascular cells, impaired insulin-stimulated glucose uptake by human adipocytes. CONCLUSIONS: These findings identify proinflammatory CD11c(+) ATMs as markers of insulin resistance in human obesity. In addition, the machinery of CD11c(+) ATMs indicates they metabolize lipid and may initiate adaptive immune responses.