Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 10
  • Item
    No Preview Available
    CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs
    Duan, M ; Steinfort, DP ; Smallwood, D ; Hew, M ; Chen, W ; Ernst, M ; Irving, LB ; Anderson, GP ; Hibbs, ML (NATURE PUBLISHING GROUP, 2016-03)
    The development of easily accessible tools for human immunophenotyping to classify patients into discrete disease endotypes is advancing personalized therapy. However, no systematic approach has been developed for the study of inflammatory lung diseases with often complex and highly heterogeneous disease etiologies. We have devised an internally standardized flow cytometry approach that can identify parallel inflammatory alveolar macrophage phenotypes in both the mouse and human lungs. In mice, lung innate immune cell alterations during endotoxin challenge, influenza virus infection, and in two genetic models of chronic obstructive lung disease could be segregated based on the presence or absence of CD11b alveolar macrophage upregulation and lung eosinophilia. Additionally, heightened alveolar macrophage CD11b expression was a novel feature of acute lung exacerbations in the SHIP-1(-/-) model of chronic obstructive lung disease, and anti-CD11b antibody administration selectively blocked inflammatory CD11b(pos) but not homeostatic CD11b(neg) alveolar macrophages in vivo. The identification of analogous profiles in respiratory disease patients highlights this approach as a translational avenue for lung disease endotyping and suggests that heterogeneous innate immune cell phenotypes are an underappreciated component of the human lung disease microenvironment.
  • Item
    No Preview Available
    Oseltamivir treatment of mice before or after mild influenza infection reduced cellular and cytokine inflammation in the lung
    Wong, ZX ; Jones, JE ; Anderson, GP ; Gualano, RC (WILEY, 2011-09)
    BACKGROUND: Lung inflammation is a critical determinant of influenza infection outcomes but is seldom evaluated in animal studies of oseltamivir (OS), which have focused on viral titre and survival. OBJECTIVES: To study the effects of pre- and post-infection dosing with OS on viral replication and inflammation in a mouse model of non-lethal influenza infection. METHODS: BALB/c mice were infected with a laboratory-adapted H3N1 strain of influenza. In pre-dosing studies, OS was gavaged twice daily (1 and 10 mg/kg/day) from 4 hours prior to infection and continuing for 5 days (d) post-infection (p.i). In the second post-infection dosing study, dosing at 10 mg/kg/day began at 24-48 hours p.i. Mice were dissected at d3, d5 and d7 p.i. (pre-dosing study) and d5 p.i. (post-dosing study). Lung viral titres were determined by plaque assay. Bronchoalveolar lavage fluid (BALF) was collected and used for the quantitation of inflammatory cells and mediators. RESULTS: Pre-infection dosing of OS reduced total cells, neutrophils and macrophages in BALF. With pre- or post-infection dosing, the pro-inflammatory mediators TNF-α, IL-1β, IL-6 and granulocyte-macrophage colony-stimulating factor, the neutrophil chemokines keratinocyte-derived chemokine and MIP-1α and the macrophage chemokine MCP-1 were reduced in BALF. Pre-dosing with 1 mg/kg OS did not reduce viral titres, while 10 mg/kg slightly reduced viral titres at d3 and d5 p.i. CONCLUSIONS: Oseltamivir reduced the inflammatory response to influenza when given pre- or post-infection. This anti-inflammatory effect may contribute to the clinical benefit of OS.
  • Item
    No Preview Available
    Identifying viral infections in vaccinated Chronic Obstructive Pulmonary Disease (COPD) patients using clinical features and inflammatory markers
    Hutchinson, AF ; Black, J ; Thompson, MA ; Bozinovski, S ; Brand, CA ; Smallwood, DM ; Irving, LB ; Anderson, GP (WILEY, 2010-01)
    BACKGROUND: Known inflammatory markers have limited sensitivity and specificity to differentiate viral respiratory tract infections from other causes of acute exacerbation of COPD (AECOPD). To overcome this, we developed a multi-factorial prediction model combining viral symptoms with inflammatory markers. METHODS: Interleukin-6 (IL-6), serum amyloid A (SAA) and viral symptoms were measured in stable COPD and at AECOPD onset and compared with the viral detection rates on multiplex PCR. The predictive accuracy of each measure was assessed using logistic regression and receiver operating characteristics curve (ROC) analysis. RESULTS: There was a total of 33 viruses detected at the onset of 148 AECOPD, the majority 26 (79%) were picornavirus. Viral symptoms with the highest predictive values were rhinorrhoea [Odds ratio (OR) 4.52; 95% CI 1.99-10.29; P < 0.001] and sore throat (OR 2.64; 95% CI 1.14-6.08; P = 0.022), combined the AUC ROC curve was 0.67. At AECOPD onset patients experienced a 1.6-fold increase in IL-6 (P = 0.008) and 4.5-fold increase in SAA (P < 0.001). The addition of IL-6 to the above model significantly improved diagnostic accuracy compared with symptoms alone (AUC ROC 0.80 (P = 0.012). CONCLUSION: The addition of inflammatory markers increases the specificity of a clinical case definition for viral infection, particularly picornavirus infection.
  • Item
    Thumbnail Image
    Increase in Net Activity of Serine Proteinases but Not Gelatinases after Local Endotoxin Exposure in the Peripheral Airways of Healthy Subjects
    Smith, ME ; Bozinovski, S ; Malmhall, C ; Sjostrand, M ; Glader, P ; Venge, P ; Hiemstra, PS ; Anderson, GP ; Linden, A ; Qvarfordt, I ; Benarafa, C (PUBLIC LIBRARY SCIENCE, 2013-09-23)
    We tested the hypothesis that activation of the innate immune response induces an imbalance in the proteolytic homeostasis in the peripheral airways of healthy subjects, towards excess serine or gelatinase proteinase activity. During bronchoscopy, 18 healthy human subjects underwent intra-bronchial exposure to endotoxin and contra-lateral exposure to vehicle. Bronchoalveolar lavage (BAL) samples were harvested 24 or 48 hours (h) later. We quantified archetype proteinases, anti-proteinases, inflammatory BAL cells, and, importantly, total plus net proteinase activities using functional substrate assays. As expected, endotoxin exposure increased the concentrations of polymorphonuclear leukocytes (PMN's) and macrophages, of proteinases and the anti-proteinases tissue inhibitor of metalloproteinase-1, α-1-antitrypsin and, to a lesser extent, secretory leukoproteinase inhibitor, at both time points. Notably, at these time points, endotoxin exposure substantially increased the quantitative NE/SLPI ratio and the net serine proteinase activity corresponding to neutrophil elastase (NE). Endotoxin exposure also increased the total gelatinase activity corresponding to matrix metalloproteinase (MMP)-9; an activity dominating over that of MMP-2. However, endotoxin exposure had no impact on net gelatinolytic activity at 24 or 48 h after exposure. Thus, local activation of the innate immune response induces an imbalance towards increased net serine proteinase activity in the proteolytic homeostasis of the peripheral airways in healthy subjects. Hypothetically, this serine proteinase activity can contribute to tissue remodelling and hypersecretion via NE from PMN's, if it is triggered repeatedly, as might be the case in chronic inflammatory airway disorders.
  • Item
    Thumbnail Image
    Non-Essential Role for TLR2 and Its Signaling Adaptor Mal/TIRAP in Preserving Normal Lung Architecture in Mice
    Ruwanpura, SM ; McLeod, L ; Lilja, AR ; Brooks, G ; Dousha, LF ; Seow, HJ ; Bozinovski, S ; Vlahos, R ; Hertzog, PJ ; Anderson, GP ; Jenkins, BJ ; Mora, A (PUBLIC LIBRARY SCIENCE, 2013-10-29)
    Myeloid differentiation factor 88 (MyD88) and MyD88-adaptor like (Mal)/Toll-interleukin 1 receptor domain containing adaptor protein (TIRAP) play a critical role in transducing signals downstream of the Toll-like receptor (TLR) family. While genetic ablation of the TLR4/MyD88 signaling axis in mice leads to pulmonary cell death and oxidative stress culminating in emphysema, the involvement of Mal, as well as TLR2 which like TLR4 also signals via MyD88 and Mal, in the pathogenesis of emphysema has not been studied. By employing an in vivo genetic approach, we reveal here that unlike the spontaneous pulmonary emphysema which developed in Tlr4(-/-) mice by 6 months of age, the lungs of Tlr2(-/-) mice showed no physiological or morphological signs of emphysema. A more detailed comparative analysis of the lungs from these mice confirmed that elevated oxidative protein carbonylation levels and increased numbers of alveolar cell apoptosis were only detected in Tlr4(-/-) mice, along with up-regulation of NADPH oxidase 3 (Nox3) mRNA expression. With respect to Mal, the architecture of the lungs of Mal(-/-) mice was normal. However, despite normal oxidative protein carbonylation levels in the lungs of emphysema-free Mal(-/-) mice, these mice displayed increased levels of apoptosis comparable to those observed in emphysematous Tlr4(-/-) mice. In conclusion, our data provide in vivo evidence for the non-essential role for TLR2, unlike the related TLR4, in maintaining the normal architecture of the lung. In addition, we reveal that Mal differentially facilitates the anti-apoptotic, but not oxidant suppressive, activities of TLR4 in the lung, both of which appear to be essential for TLR4 to prevent the onset of emphysema.
  • Item
    Thumbnail Image
    Glucocorticosteroids Differentially Regulate MMP-9 and Neutrophil Elastase in COPD
    Vlahos, R ; Wark, PAB ; Anderson, GP ; Bozinovski, S ; Hartl, D (PUBLIC LIBRARY SCIENCE, 2012-03-07)
    BACKGROUND: Chronic Obstructive Pulmonary Disease (COPD) is currently the fifth leading cause of death worldwide. Neutrophilic inflammation is prominent, worsened during infective exacerbations and is refractory to glucocorticosteroids (GCs). Deregulated neutrophilic inflammation can cause excessive matrix degradation through proteinase release. Gelatinase and azurophilic granules within neutrophils are a major source of matrix metalloproteinase (MMP)-9 and neutrophil elastase (NE), respectively, which are elevated in COPD. METHODS: Secreted MMP-9 and NE activity in BALF were stratified according to GOLD severity stages. The regulation of secreted NE and MMP-9 in isolated blood neutrophils was investigated using a pharmacological approach. In vivo release of MMP-9 and NE in mice exposed to cigarette smoke (CS) and/or the TLR agonist lipopolysaccharide (LPS) in the presence of dexamethasone (Dex) was investigated. RESULTS: Neutrophil activation as assessed by NE release was increased in severe COPD (36-fold, GOLD II vs. IV). MMP-9 levels (8-fold) and activity (21-fold) were also elevated in severe COPD, and this activity was strongly associated with BALF neutrophils (r = 0.92, p<0.001), but not macrophages (r = 0.48, p = 0.13). In vitro, release of NE and MMP-9 from fMLP stimulated blood neutrophils was insensitive to Dex and attenuated by the PI3K inhibitor, wortmannin. In vivo, GC resistant neutrophil activation (NE release) was only seen in mice exposed to CS and LPS. In addition, GC refractory MMP-9 expression was only associated with neutrophil activation. CONCLUSIONS: As neutrophils become activated with increasing COPD severity, they become an important source of NE and MMP-9 activity, which secrete proteinases independently of TIMPs. Furthermore, as NE and MMP-9 release was resistant to GC, targeting of the PI3K pathway may offer an alternative pathway to combating this proteinase imbalance in severe COPD.
  • Item
    Thumbnail Image
    Genetic partitioning of interleukin-6 signalling in mice dissociates Stat3 from Smad3-mediated lung fibrosis
    O'Donoghue, RJJ ; Knight, DA ; Richards, CD ; Prele, CM ; Lau, HL ; Jarnicki, AG ; Jones, J ; Bozinovski, S ; Vlahos, R ; Thiem, S ; McKenzie, BS ; Wang, B ; Stumbles, P ; Laurent, GJ ; McAnulty, RJ ; Rose-John, S ; Zhu, HJ ; Anderson, GP ; Ernst, MR ; Mutsaers, SE (WILEY, 2012-09)
    Idiopathic pulmonary fibrosis (IPF) is a fatal disease that is unresponsive to current therapies and characterized by excessive collagen deposition and subsequent fibrosis. While inflammatory cytokines, including interleukin (IL)-6, are elevated in IPF, the molecular mechanisms that underlie this disease are incompletely understood, although the development of fibrosis is believed to depend on canonical transforming growth factor (TGF)-β signalling. We examined bleomycin-induced inflammation and fibrosis in mice carrying a mutation in the shared IL-6 family receptor gp130. Using genetic complementation, we directly correlate the extent of IL-6-mediated, excessive Stat3 activity with inflammatory infiltrates in the lung and the severity of fibrosis in corresponding gp130(757F) mice. The extent of fibrosis was attenuated in B lymphocyte-deficient gp130(757F);µMT(-/-) compound mutant mice, but fibrosis still occurred in their Smad3(-/-) counterparts consistent with the capacity of excessive Stat3 activity to induce collagen 1α1 gene transcription independently of canonical TGF-β/Smad3 signalling. These findings are of therapeutic relevance, since we confirmed abundant STAT3 activation in fibrotic lungs from IPF patients and showed that genetic reduction of Stat3 protected mice from bleomycin-induced lung fibrosis.
  • Item
    Thumbnail Image
    Innate cellular sources of interleukin-17A regulate macrophage accumulation in cigarette-smoke-induced lung inflammation in mice
    Bozinovski, S ; Seow, HJ ; Chan, SPJ ; Anthony, D ; McQualter, J ; Hansen, M ; Jenkins, BJ ; Anderson, GP ; Vlahos, R (PORTLAND PRESS LTD, 2015-11-01)
    Cigarette smoke (CS) is the major cause of chronic obstructive pulmonary disease (COPD). Interleukin-17A (IL-17A) is a pivotal cytokine that regulates lung immunity and inflammation. The aim of the present study was to investigate how IL-17A regulates CS-induced lung inflammation in vivo. IL-17A knockout (KO) mice and neutralization of IL-17A in wild-type (WT) mice reduced macrophage and neutrophil recruitment and chemokine (C-C motif) ligand 2 (CCL2), CCL3 and matrix metalloproteinase (MMP)-12 mRNA expression in response to acute CS exposure. IL-17A expression was increased in non-obese diabetic (NOD) severe combined immunodeficiency SCID) mice with non-functional B- and T-cells over a 4-week CS exposure period, where macrophages accumulated to the same extent as in WT mice. Gene expression analysis by QPCR (quantitative real-time PCR) of isolated immune cell subsets detected increased levels of IL-17A transcript in macrophages, neutrophils and NK/NKT cells in the lungs of CS-exposed mice. In order to further explore the relative contribution of innate immune cellular sources, intracellular IL-17A staining was performed. In the present study, we demonstrate that CS exposure primes natural killer (NK), natural killer T (NKT) and γδ T-cells to produce more IL-17A protein and CS alone increased the frequency of IL17+ γδ T-cells in the lung, whereas IL-17A protein was not detected in macrophages and neutrophils. Our data suggest that activation of innate cellular sources of IL-17A is an essential mediator of macrophage accumulation in CS-exposed lungs. Targeting non-conventional T-cell sources of IL-17A may offer an alternative strategy to reduce pathogenic macrophages in COPD.
  • Item
    Thumbnail Image
    Tumour-associated neutrophils and loss of epithelial PTEN can promote corticosteroid-insensitive MMP-9 expression in the chronically inflamed lung microenvironment
    Vannitamby, A ; Seow, HJ ; Anderson, G ; Vlahos, R ; Thompson, M ; Steinfort, D ; Irving, LB ; Bozinovski, S (BMJ PUBLISHING GROUP, 2017-12)
    Matrix metalloproteinase-9 (MMP-9) is increased in a number of pathological lung conditions, where the proteinase contributes to deleterious remodelling of the airways. While both lung cancer and COPD are associated with increased MMP-9 expression, the cellular and molecular drivers of MMP-9 remain unresolved. In this study, MMP-9 transcript measured within the tumour region from patients with non-small-cell lung cancer (NSCLC) and coexisting COPD was found to be uniformly increased relative to adjacent tumour-free tissue. MMP-9 gene expression and immunohistochemistry identified tumour-associated neutrophils, but not macrophages, as a predominant source of this proteinase. In addition, PTEN gene expression was significantly reduced in tumour and there was evidence of epithelial MMP-9 expression. To explore whether PTEN can regulate epithelial MMP-9 expression, a small interfering (si)RNA knockdown strategy was used in Beas-2B bronchial epithelial cells. PTEN knockdown by siRNA selectively increased MMP-9 expression in response to lipopolysaccharide in a corticosteroid-insensitive manner. In summary, tumour-associated neutrophils represent an important source of MMP-9 in NSCLC, and loss of epithelial PTEN may further augment steroid-insensitive expression.
  • Item
    Thumbnail Image
    Elucidation of pathways driving asthma pathogenesis: development of a systems-level analytic strategy
    Walker, ML ; Holt, KE ; Anderson, GP ; Teo, SM ; Sly, PD ; Holt, PG ; Inouye, M (FRONTIERS MEDIA SA, 2014-09-23)
    Asthma is a genetically complex, chronic lung disease defined clinically as episodic airflow limitation and breathlessness that is at least partially reversible, either spontaneously or in response to therapy. Whereas asthma was rare in the late 1800s and early 1900s, the marked increase in its incidence and prevalence since the 1960s points to substantial gene × environment interactions occurring over a period of years, but these interactions are very poorly understood (1-6). It is widely believed that the majority of asthma begins during childhood and manifests first as intermittent wheeze. However, wheeze is also very common in infancy and only a subset of wheezy children progress to persistent asthma for reasons that are largely obscure. Here, we review the current literature regarding causal pathways leading to early asthma development and chronicity. Given the complex interactions of many risk factors over time eventually leading to apparently multiple asthma phenotypes, we suggest that deeply phenotyped cohort studies combined with sophisticated network models will be required to derive the next generation of biological and clinical insights in asthma pathogenesis.