Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    IL33 Is a Stomach Alarmin That Initiates a Skewed Th2 Response to Injury and Infection
    Buzzelli, JN ; Chalinor, HV ; Pavlic, DI ; Sutton, P ; Menheniott, TR ; Giraud, AS ; Judd, LM (ELSEVIER INC, 2015-03)
    BACKGROUND & AIMS: Interleukin (IL)33 is a recently described alarmin that is highly expressed in the gastric mucosa and potently activates Th2 immunity. It may play a pivotal role during Helicobacter pylori infection. Here, we delineate the role of IL33 in the normal gastric mucosa and in response to gastropathy. METHODS: IL33 expression was evaluated in mice and human biopsy specimens infected with H pylori and in mice after dosing with aspirin. IL33 expression was localized in the gastric mucosa using immunofluorescence. Mice were given 1 or 7 daily doses of recombinant IL33 (1 μg/dose), and the stomach and the spleen responses were quantified morphologically, by flow cytometry and using quantitative reverse-transcription polymerase chain reaction and immunoblotting. RESULTS: In mice, the IL33 protein was localized to the nucleus of a subpopulation of surface mucus cells, and co-localized with the surface mucus cell markers Ulex Europaeus 1 (UEA1), and Mucin 5AC (Muc5AC). A small proportion of IL33-positive epithelial cells also were Ki-67 positive. IL33 and its receptor Interleukin 1 receptor-like 1 (ST2) were increased 4-fold after acute (1-day) H pylori infection, however, this increase was not apparent after 7 days and IL33 expression was reduced 2-fold after 2 months. Similarly, human biopsy specimens positive for H pylori had a reduced IL33 expression. Chronic IL33 treatment in mice caused systemic activation of innate lymphoid cell 2 and polarization of macrophages to the M2 phenotype. In the stomach, IL33-treated mice developed transmural inflammation and mucous metaplasia that was mediated by Th2/signal transducer and activator of transcription 3 signaling. Rag-1-/- mice, lacking mature lymphocytes, were protected from IL33-induced gastric pathology. CONCLUSIONS: IL33 is highly expressed in the gastric mucosa and promotes the activation of T helper 2-cytokine-expressing cells. The loss of IL33 expression after prolonged H pylori infection may be permissive for the T helper 1-biased immune response observed during H pylori infection and subsequent precancerous progression.
  • Item
    Thumbnail Image
    IL-1RT1 signaling antagonizes IL-11 induced STAT3 dependent cardiac and antral stomach tumor development through myeloid cell enrichment
    Buzzelli, JN ; Pavlic, DI ; Chalinor, HV ; O'Connor, L ; Menheniott, TR ; Giraud, AS ; Judd, LM (IMPACT JOURNALS LLC, 2015-01-20)
    IL-1 is key driver of gastric tumorigenesis and is a downstream target of IL-11 signaling. Recently, IL-1 cytokines, particularly IL-1β, have been flagged as therapeutic targets for gastric cancer treatment. Here, we assess the requirement for IL-1 signaling in gastric tumorigenesis. gp130757FF xIL-1RT1-/- mice were generated to determine the pathological consequence of ablated IL-1 signaling in the IL-11 dependent gp130757FF mouse model of gastric tumorigenesis. Gastric lesions in gp130757FF xIL-1RT1-/- mice were increased in incidence and size compared to gp130757FF mice. Proximal gastric lesions originated from the cardiac region and were associated with elevated STAT3 activation, loss of specialized gastric cells and a modulated immune response including increased expression of TNF-α and MDSC associated genes. Administration of IL-11 to IL-1RT1-/- mice showed similar changes to gp130757FF xIL-1RT1-/- mice. Spleens from IL-11 treated wildtype mice showed an enrichment of MDSC and gp130757FF xIL-1RT1-/- mice had increased MDSCs in the stomach compared to gp130757FF mice. Furthermore, crossing TNF-α-/- to gp130757FF mice resulted in reduced lesion size. We conclude that IL-1 signaling antagonizes IL-11/STAT3 mediated pathology and the genetic deletion of IL-1RT1 results in increased tumor burden. We provide evidence that a likely mechanism is due to IL-11/STAT3 dependent enrichment of MDSCs.