Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 22
  • Item
    Thumbnail Image
    THE CONCISE GUIDE TO PHARMACOLOGY 2017/18: Overview.
    Alexander, SP ; Kelly, E ; Marrion, NV ; Peters, JA ; Faccenda, E ; Harding, SD ; Pawson, AJ ; Sharman, JL ; Southan, C ; Buneman, OP ; Cidlowski, JA ; Christopoulos, A ; Davenport, AP ; Fabbro, D ; Spedding, M ; Striessnig, J ; Davies, JA ; CGTP Collaborators, (Wiley, 2017-12)
    The Concise Guide to PHARMACOLOGY 2017/18 is the third in this series of biennial publications. This version provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website. It provides a permanent, citable, point-in-time record that will survive database updates. The full contents of this section can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13882/full. In addition to this overview, in which are identified 'Other protein targets' which fall outside of the subsequent categorisation, there are eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The landscape format of the Concise Guide is designed to facilitate comparison of related targets from material contemporary to mid-2017, and supersedes data presented in the 2015/16 and 2013/14 Concise Guides and previous Guides to Receptors and Channels. It is produced in close conjunction with the Nomenclature Committee of the Union of Basic and Clinical Pharmacology (NC-IUPHAR), therefore, providing official IUPHAR classification and nomenclature for human drug targets, where appropriate.
  • Item
    Thumbnail Image
    Elucidation of relaxin-3 binding interactions in the extracellular loops of RXFP3.
    Bathgate, RAD ; Oh, MHY ; Ling, WJJ ; Kaas, Q ; Hossain, MA ; Gooley, PR ; Rosengren, KJ (Frontiers Media SA, 2013)
    Relaxin-3 is a highly conserved neuropeptide in vertebrate species and binds to the Class A G protein-coupled receptor (GPCR) RXFP3. Relaxin-3 is involved in a wide range of behaviors, including feeding, stress responses, arousal, and cognitive processes and therefore targeting of RXFP3 may be relevant for a range of neurological diseases. Structural knowledge of RXFP3 and its interaction with relaxin-3 would both increase our understanding of ligand recognition in GPCRs that respond to protein ligands and enable acceleration of the design of drug leads. In this study we have used comparative sequence analysis, molecular modeling and receptor mutagenesis to investigate the binding site of the native ligand human relaxin-3 (H3 relaxin) on the human RXFP3 receptor. Previous structure function studies have demonstrated that arginine residues in the H3 relaxin B-chain are critical for binding interactions with the receptor extracellular loops and/or N-terminal domain. Hence we have concentrated on determining the ligand interacting sites in these domains and have focused on glutamic (E) and aspartic acid (D) residues in these regions that may form electrostatic interactions with these critical arginine residues. Conserved D/E residues identified from vertebrate species multiple sequence alignments were mutated to Ala in human RXFP3 to test the effect of loss of amino acid side chain on receptor binding using a Eu-labeled relaxin-3 agonist. Finally data from mutagenesis experiments have been used in ligand docking simulations to a homology model of human RXFP3 based on the peptide-bound chemokine receptor 4 (CXCR4) structure. These studies have resulted in a model of the relaxin-3 interaction with RXFP3 which will inform further interrogation of the agonist binding site.
  • Item
    Thumbnail Image
    Relaxin Signals through a RXFP1-pERK-nNOS-NO-cGMP-Dependent Pathway to Up-Regulate Matrix Metalloproteinases: The Additional Involvement of iNOS
    Chow, BSM ; Chew, EGY ; Zhao, C ; Bathgate, RAD ; Hewitson, TD ; Samuel, CS ; Agoulnik, I (PUBLIC LIBRARY SCIENCE, 2012-08-22)
    The hormone, relaxin, inhibits aberrant myofibroblast differentiation and collagen deposition by disrupting the TGF-β1/Smad2 axis, via its cognate receptor, Relaxin Family Peptide Receptor 1 (RXFP1), extracellular signal-regulated kinase (ERK)1/2 phosphorylation (pERK) and a neuronal nitric oxide (NO) synthase (nNOS)-NO-cyclic guanosine monophosphate (cGMP)-dependent pathway. However, the signalling pathways involved in its additional ability to increase matrix metalloproteinase (MMP) expression and activity remain unknown. This study investigated the extent to which the NO pathway was involved in human gene-2 (H2) relaxin's ability to positively regulate MMP-1 and its rodent orthologue, MMP-13, MMP-2 and MMP-9 (the main collagen-degrading MMPs) in TGF-β1-stimulated human dermal fibroblasts and primary renal myofibroblasts isolated from injured rats; by gelatin zymography (media) and Western blotting (cell layer). H2 relaxin (10-100 ng/ml) significantly increased MMP-1 (by ~50%), MMP-2 (by ~80%) and MMP-9 (by ~80%) in TGF-β1-stimulated human dermal fibroblasts; and MMP-13 (by ~90%), MMP-2 (by ~130%) and MMP-9 (by ~115%) in rat renal myofibroblasts (all p<0.01 vs untreated cells) over 72 hours. The relaxin-induced up-regulation of these MMPs, however, was significantly blocked by a non-selective NOS inhibitor (L-nitroarginine methyl ester (hydrochloride); L-NAME; 75-100 µM), and specific inhibitors to nNOS (N-propyl-L-arginine; NPLA; 0.2-2 µM), iNOS (1400W; 0.5-1 µM) and guanylyl cyclase (ODQ; 5 µM) (all p<0.05 vs H2 relaxin alone), but not eNOS (L-N-(1-iminoethyl)ornithine dihydrochloride; L-NIO; 0.5-5 µM). However, neither of these inhibitors affected basal MMP expression at the concentrations used. Furthermore, of the NOS isoforms expressed in renal myofibroblasts (nNOS and iNOS), H2 relaxin only stimulated nNOS expression, which in turn, was blocked by the ERK1/2 inhibitor (PD98059; 1 µM). These findings demonstrated that H2 relaxin signals through a RXFP1-pERK-nNOS-NO-cGMP-dependent pathway to mediate its anti-fibrotic actions, and additionally signals through iNOS to up-regulate MMPs; the latter being suppressed by TGF-β1 in myofibroblasts, but released upon H2 relaxin-induced inhibition of the TGF-β1/Smad2 axis.
  • Item
    Thumbnail Image
    The complex binding mode of the peptide hormone H2 relaxin to its receptor RXFP1
    Sethi, A ; Bruell, S ; Patil, N ; Hossain, MA ; Scott, DJ ; Petrie, EJ ; Bathgate, RAD ; Gooley, PR (NATURE PUBLISHING GROUP, 2016-04)
    H2 relaxin activates the relaxin family peptide receptor-1 (RXFP1), a class A G-protein coupled receptor, by a poorly understood mechanism. The ectodomain of RXFP1 comprises an N-terminal LDLa module, essential for activation, tethered to a leucine-rich repeat (LRR) domain by a 32-residue linker. H2 relaxin is hypothesized to bind with high affinity to the LRR domain enabling the LDLa module to bind and activate the transmembrane domain of RXFP1. Here we define a relaxin-binding site on the LDLa-LRR linker, essential for the high affinity of H2 relaxin for the ectodomain of RXFP1, and show that residues within the LDLa-LRR linker are critical for receptor activation. We propose H2 relaxin binds and stabilizes a helical conformation of the LDLa-LRR linker that positions residues of both the linker and the LDLa module to bind the transmembrane domain and activate RXFP1.
  • Item
    Thumbnail Image
    ML290 is a biased allosteric agonist at the relaxin receptor RXFP1
    Kocan, M ; Sarwar, M ; Ang, SY ; Xiao, J ; Marugan, JJ ; Hossain, MA ; Wang, C ; Hutchinson, DS ; Samuel, CS ; Agoulnik, AI ; Bathgate, RAD ; Summers, RJ (NATURE PORTFOLIO, 2017-06-07)
    Activation of the relaxin receptor RXFP1 has been associated with improved survival in acute heart failure. ML290 is a small molecule RXFP1 agonist with simple structure, long half-life and high stability. Here we demonstrate that ML290 is a biased agonist in human cells expressing RXFP1 with long-term beneficial actions on markers of fibrosis in human cardiac fibroblasts (HCFs). ML290 did not directly compete with orthosteric relaxin binding and did not affect binding kinetics, but did increase binding to RXFP1. In HEK-RXFP1 cells, ML290 stimulated cAMP accumulation and p38MAPK phosphorylation but not cGMP accumulation or ERK1/2 phosphorylation although prior addition of ML290 increased p-ERK1/2 responses to relaxin. In human primary vascular endothelial and smooth muscle cells that endogenously express RXFP1, ML290 increased both cAMP and cGMP accumulation but not p-ERK1/2. In HCFs, ML290 increased cGMP accumulation but did not affect p-ERK1/2 and given chronically activated MMP-2 expression and inhibited TGF-β1-induced Smad2 and Smad3 phosphorylation. In vascular cells, ML290 was 10x more potent for cGMP accumulation and p-p38MAPK than for cAMP accumulation. ML290 caused strong coupling of RXFP1 to Gαs and GαoB but weak coupling to Gαi3. ML290 exhibited signalling bias at RXFP1 possessing a signalling profile indicative of vasodilator and anti-fibrotic properties.
  • Item
    Thumbnail Image
    A single-chain derivative of the relaxin hormone is a functionally selective agonist of the G protein-coupled receptor, RXFP1
    Hossain, MA ; Kocan, M ; Yao, ST ; Royce, SG ; Nair, VB ; Siwek, C ; Patil, NA ; Harrison, IP ; Rosengren, KJ ; Selemidis, S ; Summers, RJ ; Wade, JD ; Bathgate, RAD ; Samuel, CS (ROYAL SOC CHEMISTRY, 2016)
    Human gene-2 relaxin (H2 relaxin) is a pleiotropic hormone with powerful vasodilatory and anti-fibrotic properties which has led to its clinical evaluation and provisional FDA approval as a treatment for acute heart failure. The diverse effects of H2 relaxin are mediated via its cognate G protein coupled-receptor (GPCR), Relaxin Family Peptide Receptor (RXFP1), leading to stimulation of a combination of cell signalling pathways that includes cyclic adenosine monophosphate (cAMP) and extracellular-signal-regulated kinases (ERK)1/2. However, its complex two-chain (A and B), disulfide-rich insulin-like structure is a limitation to its facile preparation, availability and affordability. Furthermore, its strong activation of cAMP signaling is likely responsible for reported detrimental tumor-promoting actions that may preclude long-term use of this drug for treating human disease. Here we report the design and synthesis of a H2 relaxin B-chain-only analogue, B7-33, which was shown to bind to RXFP1 and preferentially activate the pERK pathway over cAMP in cells that endogenously expressed RXFP1. Thus, B7-33 represents the first functionally selective agonist of the complex GPCR, RXFP1. Importantly, this small peptide agonist prevented or reversed organ fibrosis and dysfunction in three pre-clinical rodent models of heart or lung disease with similar potency to H2 relaxin. The molecular mechanism behind the strong anti-fibrotic actions of B7-33 involved its activation of RXFP1-angiotensin II type 2 receptor heterodimers that induced selective downstream signaling of pERK1/2 and the collagen-degrading enzyme, matrix metalloproteinase (MMP)-2. Furthermore, in contrast to H2 relaxin, B7-33 did not promote prostate tumor growth in vivo. Our results represent the first known example of the minimisation of a two-chain cyclic insulin-like peptide to a single-chain linear peptide that retains potent beneficial agonistic effects.
  • Item
    Thumbnail Image
    Characterisation of a cell-free synthesised G-protein coupled receptor
    Shilling, PJ ; Bumbak, F ; Scott, DJ ; Bathgate, RAD ; Gooley, PR (NATURE PORTFOLIO, 2017-04-24)
    G-protein coupled receptors are the largest family of integral membrane proteins found within the human genome. They function as receptors and modulators to a wide range of ligands and responses which are crucial for human health. GPCR study, specifically the investigation of structure and interaction to cognate ligands, is of high priority. Limitations for structural study can be traced in part, to obtaining suitable quantities of recombinant protein. We sought to address the limitations of traditional recombinant technologies by utilising an Escherichia coli based cell-free protein synthesis (CFPS) approach for production of a thermostable neurotensin receptor 1 (en2NTS1). Initial results were promising, with a high amount (up to 2 mg/mL) of en2NTS1 produced, that had attained correct secondary structure. Meanwhile, concurrent experiments indicated that CFPS produced en2NTS1 showed non-competitive binding to the peptide ligand neurotensin8-13 when compared to E. coli produced en2NTS1. 1H-13C HMQC SOFAST NMR spectra were indicative of disrupted tertiary structure for CFPS produced 13CH3-methionine labelled en2NTS1. The results obtained, indicate CFPS produced en2NTS1 is not forming a discrete tertiary structure and that further development of the CFPS technique needs to be carried out.
  • Item
    Thumbnail Image
    THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: Overview
    Alexander, SPH ; Kelly, E ; Marrion, N ; Peters, JA ; Benson, HE ; Faccenda, E ; Pawson, AJ ; Sharman, JL ; Southan, C ; Buneman, OP ; Catterall, WA ; Cidlowski, JA ; Davenport, AP ; Fabbro, D ; Fan, G ; McGrath, JC ; Spedding, M ; Davies, JA ; Aldrich, R ; Attali, B ; Back, M ; Barnes, NM ; Bathgate, R ; Beart, PM ; Becirovic, E ; Biel, M ; Birdsall, NJ ; Boison, D ; Brauner-Osborne, H ; Broeer, S ; Bryant, C ; Burnstock, G ; Burris, T ; Cain, D ; Calo, G ; Chan, SL ; Chandy, KG ; Chiang, N ; Christakos, S ; Christopoulos, A ; Chun, JJ ; Chung, J-J ; Clapham, DE ; Connor, MA ; Coons, L ; Cox, HM ; Dautzenberg, FM ; Dent, G ; Douglas, SD ; Dubocovich, ML ; Edwards, DP ; Farndale, R ; Fong, TM ; Forrest, D ; Fowler, CJ ; Fuller, P ; Gainetdinov, RR ; Gershengorn, MA ; Goldin, A ; Goldstein, SAN ; Grimm, SL ; Grissmer, S ; Gundlach, AL ; Hagenbuch, B ; Hammond, JR ; Hancox, JC ; Hartig, S ; Hauger, RL ; Hay, DL ; Hebert, T ; Hollenberg, AN ; Holliday, ND ; Hoyer, D ; Ijzerman, AP ; Inui, KI ; Ishii, S ; Jacobson, KA ; Jan, LY ; Jarvis, GE ; Jensen, R ; Jetten, A ; Jockers, R ; Kaczmarek, LK ; Kanai, Y ; Kang, HS ; Karnik, S ; Kerr, ID ; Korach, KS ; Lange, CA ; Larhammar, D ; Leeb-Lundberg, F ; Leurs, R ; Lolait, SJ ; Macewan, D ; Maguire, JJ ; May, JM ; Mazella, J ; McArdle, CA ; McDonnell, DP ; Michel, MC ; Miller, LJ ; Mitolo, V ; Monie, T ; Monk, PN ; Mouillac, B ; Murphy, PM ; Nahon, J-L ; Nerbonne, J ; Nichols, CG ; Norel, X ; Oakley, R ; Offermanns, S ; Palmer, LG ; Panaro, MA ; Perez-Reyes, E ; Pertwee, RG ; Pike, JW ; Pin, JP ; Pintor, S ; Plant, LD ; Poyner, DR ; Prossnitz, ER ; Pyne, S ; Ren, D ; Richer, JK ; Rondard, P ; Ross, RA ; Sackin, H ; Safi, R ; Sanguinetti, MC ; Sartorius, CA ; Segaloff, DL ; Sladek, FM ; Stewart, G ; Stoddart, LA ; Striessnig, J ; Summers, RJ ; Takeda, Y ; Tetel, M ; Toll, L ; Trimmer, JS ; Tsai, M-J ; Tsai, SY ; Tucker, S ; Usdin, TB ; Vilargada, J-P ; Vore, M ; Ward, DT ; Waxman, SG ; Webb, P ; Wei, AD ; Weigel, N ; Willars, GB ; Winrow, C ; Wong, SS ; Wulff, H ; Ye, RD ; Young, M ; Zajac, J-M (WILEY-BLACKWELL, 2015-12)
    The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13347/full. This compilation of the major pharmacological targets is divided into eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.
  • Item
    Thumbnail Image
    Distinct activation modes of the Relaxin Family Peptide Receptor 2 in response to insulin-like peptide 3 and relaxin
    Bruell, S ; Sethi, A ; Smith, N ; Scott, DJ ; Hossain, MA ; Wu, Q-P ; Guo, Z-Y ; Petrie, EJ ; Gooley, PR ; Bathgate, RAD (NATURE PORTFOLIO, 2017-06-12)
    Relaxin family peptide receptor 2 (RXFP2) is a GPCR known for its role in reproductive function. It is structurally related to the human relaxin receptor RXFP1 and can be activated by human gene-2 (H2) relaxin as well as its cognate ligand insulin-like peptide 3 (INSL3). Both receptors possess an N-terminal low-density lipoprotein type a (LDLa) module that is necessary for activation and is joined to a leucine-rich repeat domain by a linker. This linker has been shown to be important for H2 relaxin binding and activation of RXFP1 and herein we investigate the role of the equivalent region of RXFP2. We demonstrate that the linker's highly-conserved N-terminal region is essential for activation of RXFP2 in response to both ligands. In contrast, the linker is necessary for H2 relaxin, but not INSL3, binding. Our results highlight the distinct mechanism by which INSL3 activates RXFP2 whereby ligand binding mediates reorientation of the LDLa module by the linker region to activate the RXFP2 transmembrane domains in conjunction with the INSL3 A-chain. In contrast, relaxin activation of RXFP2 involves a more RXFP1-like mechanism involving binding to the LDLa-linker, reorientation of the LDLa module and activation of the transmembrane domains by the LDLa alone.
  • Item
    Thumbnail Image
    Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis
    Hoare, BL ; Bruell, S ; Sethi, A ; Gooley, PR ; Lew, MJ ; Hossain, MA ; Inoue, A ; Scott, DJ ; Bathgate, RAD (CELL PRESS, 2019-01-25)
    The peptide hormone H2 relaxin has demonstrated promise as a therapeutic, but mimetic development has been hindered by the poorly understood relaxin receptor RXFP1 activation mechanism. H2 relaxin is hypothesized to bind to two distinct ECD sites, which reorientates the N-terminal LDLa module to activate the transmembrane domain. Here we provide evidence for this model in live cells by measuring bioluminescence resonance energy transfer (BRET) between nanoluciferase-tagged RXFP1 constructs and fluorescently labeled H2 relaxin (NanoBRET). Additionally, we validate these results using the related RXFP2 receptor and chimeras with an inserted RXFP1-binding domain utilizing NanoBRET and nuclear magnetic resonance studies on recombinant proteins. We therefore provide evidence for the multi-component molecular mechanism of H2 relaxin binding to RXFP1 on the full-length receptor in cells. Also, we show the utility of NanoBRET real-time binding kinetics to reveal subtle binding complexities, which may be overlooked in traditional equilibrium binding assays.