Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    iSRAP - a one-touch research tool for rapid profiling of small RNA-seq data
    Quek, C ; Jung, C-H ; Bellingham, SA ; Lonie, A ; Hill, AF (TAYLOR & FRANCIS LTD, 2015)
    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.
  • Item
    Thumbnail Image
    Defining the purity of exosomes required for diagnostic profiling of small RNA suitable for biomarker discovery
    Quek, C ; Bellingham, SA ; Jung, C-H ; Scicluna, BJ ; Shambrook, MC ; Sharples, RA ; Cheng, L ; Hill, AF (TAYLOR & FRANCIS INC, 2017)
    Small non-coding RNAs (ncRNA), including microRNAs (miRNA), enclosed in exosomes are being utilised for biomarker discovery in disease. Two common exosome isolation methods involve differential ultracentrifugation or differential ultracentrifugation coupled with Optiprep gradient fractionation. Generally, the incorporation of an Optiprep gradient provides better separation and increased purity of exosomes. The question of whether increased purity of exosomes is required for small ncRNA profiling, particularly in diagnostic and biomarker purposes, has not been addressed and highly debated. Utilizing an established neuronal cell system, we used next-generation sequencing to comprehensively profile ncRNA in cells and exosomes isolated by these 2 isolation methods. By comparing ncRNA content in exosomes from these two methods, we found that exosomes from both isolation methods were enriched with miRNAs and contained a diverse range of rRNA, small nuclear RNA, small nucleolar RNA and piwi-interacting RNA as compared with their cellular counterparts. Additionally, tRNA fragments (30-55 nucleotides in length) were identified in exosomes and may act as potential modulators for repressing protein translation. Overall, the outcome of this study confirms that ultracentrifugation-based method as a feasible approach to identify ncRNA biomarkers in exosomes.