Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 37
  • Item
    Thumbnail Image
    Cross-talk between IL-6 trans-signaling and AIM2 inflammasome/IL-1β axes bridge innate immunity and epithelial apoptosis to promote emphysema
    Ruwanpura, SM ; McLeod, L ; Dousha, LF ; Seow, HJ ; West, AC ; West, AJ ; Weng, T ; Alanazi, M ; MacDonald, M ; King, PT ; Bardin, PG ; Gabay, C ; Klinman, DM ; Bozinovski, S ; Vlahos, R ; Anderson, GP ; Rose-John, S ; Saad, MI ; Jenkins, BJ (NATL ACAD SCIENCES, 2022-09-06)
    Pulmonary emphysema is associated with dysregulated innate immune responses that promote chronic pulmonary inflammation and alveolar apoptosis, culminating in lung destruction. However, the molecular regulators of innate immunity that promote emphysema are ill-defined. Here, we investigated whether innate immune inflammasome complexes, comprising the adaptor ASC, Caspase-1 and specific pattern recognition receptors (PRRs), promote the pathogenesis of emphysema. In the lungs of emphysematous patients, as well as spontaneous gp130F/F and cigarette smoke (CS)-induced mouse models of emphysema, the expression (messenger RNA and protein) and activation of ASC, Caspase-1, and the inflammasome-associated PRR and DNA sensor AIM2 were up-regulated. AIM2 up-regulation in emphysema coincided with the biased production of the mature downstream inflammasome effector cytokine IL-1β but not IL-18. These observations were supported by the genetic blockade of ASC, AIM2, and the IL-1 receptor and therapy with AIM2 antagonistic suppressor oligonucleotides, which ameliorated emphysema in gp130F/F mice by preventing elevated alveolar cell apoptosis. The functional requirement for AIM2 in driving apoptosis in the lung epithelium was independent of its expression in hematopoietic-derived immune cells and the recruitment of infiltrating immune cells in the lung. Genetic and inhibitor-based blockade of AIM2 also protected CS-exposed mice from pulmonary alveolar cell apoptosis. Intriguingly, IL-6 trans-signaling via the soluble IL-6 receptor, facilitated by elevated levels of IL-6, acted upstream of the AIM2 inflammasome to augment AIM2 expression in emphysema. Collectively, we reveal cross-talk between the AIM2 inflammasome/IL-1β and IL-6 trans-signaling axes for potential exploitation as a therapeutic strategy for emphysema.
  • Item
    Thumbnail Image
    Pathobiological mechanisms underlying metabolic syndrome (MetS) in chronic obstructive pulmonary disease (COPD): clinical significance and therapeutic strategies
    Chan, SMH ; Selemidis, S ; Bozinovski, S ; Vlahos, R (PERGAMON-ELSEVIER SCIENCE LTD, 2019-06)
    Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and is currently the 4th largest cause of death in the world. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities (e.g. skeletal muscle wasting, ischemic heart disease, cognitive dysfunction) and infective viral and bacterial acute exacerbations (AECOPD). Current pharmacological treatments for COPD are relatively ineffective and the development of effective therapies has been severely hampered by the lack of understanding of the mechanisms and mediators underlying COPD. Since comorbidities have a tremendous impact on the prognosis and severity of COPD, the 2015 American Thoracic Society/European Respiratory Society (ATS/ERS) Research Statement on COPD urgently called for studies to elucidate the pathobiological mechanisms linking COPD to its comorbidities. It is now emerging that up to 50% of COPD patients have metabolic syndrome (MetS) as a comorbidity. It is currently not clear whether metabolic syndrome is an independent co-existing condition or a direct consequence of the progressive lung pathology in COPD patients. As MetS has important clinical implications on COPD outcomes, identification of disease mechanisms linking COPD to MetS is the key to effective therapy. In this comprehensive review, we discuss the potential mechanisms linking MetS to COPD and hence plausible therapeutic strategies to treat this debilitating comorbidity of COPD.
  • Item
    Thumbnail Image
    Targeting the human βc receptor inhibits inflammatory myeloid cells and lung injury caused by acute cigarette smoke exposure
    Fung, NH ; Wang, H ; Vlahos, R ; Wilson, N ; Lopez, AF ; Owczarek, CM ; Bozinovski, S (WILEY, 2022-08)
    BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a devastating disease commonly caused by cigarette smoke (CS) exposure that drives tissue injury by persistently recruiting myeloid cells into the lungs. A significant portion of COPD patients also present with overlapping asthma pathology including eosinophilic inflammation. The βc cytokine family includes granulocyte monocyte-colony-stimulating factor, IL-5 and IL-3 that signal through their common receptor subunit βc to promote the expansion and survival of multiple myeloid cells including monocytes/macrophages, neutrophils and eosinophils. METHODS: We have used our unique human βc receptor transgenic (hβc Tg) mouse strain that expresses human βc instead of mouse βc and βIL3 in an acute CS exposure model. Lung tissue injury was assessed by histology and measurement of albumin and lactate dehydrogenase levels in the bronchoalveolar lavage (BAL) fluid. Transgenic mice were treated with an antibody (CSL311) that inhibits human βc signalling. RESULTS: hβc Tg mice responded to acute CS exposure by expanding blood myeloid cell numbers and recruiting monocyte-derived macrophages (cluster of differentiation 11b+ [CD11b+ ] interstitial and exudative macrophages [IM and ExM]), neutrophils and eosinophils into the lungs. This inflammatory response was associated with lung tissue injury and oedema. Importantly, CSL311 treatment in CS-exposed mice markedly reduced myeloid cell numbers in the blood and BAL compartment. Furthermore, CSL311 significantly reduced lung CD11b+ IM and ExM, neutrophils and eosinophils, and this decline was associated with a significant reduction in matrix metalloproteinase-12 (MMP-12) and IL-17A expression, tissue injury and oedema. CONCLUSION: This study identifies CSL311 as a therapeutic antibody that potently inhibits immunopathology and lung injury caused by acute CS exposure.
  • Item
    Thumbnail Image
    Influenza A virus elicits peri-vascular adipose tissue inflammation and vascular dysfunction of the aorta in pregnant mice
    Oseghale, O ; Liong, S ; Coward-Smith, M ; To, EE ; Erlich, JR ; Luong, R ; Liong, F ; Miles, M ; Norouzi, S ; Martin, C ; O'Toole, S ; Brooks, RD ; Bozinovski, S ; Vlahos, R ; O'Leary, JJ ; Brooks, DA ; Selemidis, S ; Klein, SL (PUBLIC LIBRARY SCIENCE, 2022-08)
    Influenza A virus (IAV) infection during pregnancy initiates significant aortic endothelial and vascular smooth muscle dysfunction, with inflammation and T cell activation, but the details of the mechanism are yet to be clearly defined. Here we demonstrate that IAV disseminates preferentially into the perivascular adipose tissue (PVAT) of the aorta in mice. IAV mRNA levels in the PVAT increased at 1-3 days post infection (d.p.i) with the levels being ~4-8 fold higher compared with the vessel wall. IAV infection also increased Ly6Clow patrolling monocytes and Ly6Chigh pro-inflammatory monocytes in the vessel wall at 3 d.p.i., which was then followed by a greater homing of these monocytes into the PVAT at 6 d.p.i. The vascular immune phenotype was characteristic of a "vascular storm"- like response, with increases in neutrophils, pro-inflammatory cytokines and oxidative stress markers in the PVAT and arterial wall, which was associated with an impairment in endothelium-dependent relaxation to acetylcholine. IAV also triggered a PVAT compartmentalised elevation in CD4+ and CD8+ activated T cells. In conclusion, the PVAT of the aorta is a niche that supports IAV dissemination and a site for perpetuating a profound innate inflammatory and adaptive T cell response. The manifestation of this inflammatory response in the PVAT following IAV infection may be central to the genesis of cardiovascular complications arising during pregnancy.
  • Item
    Thumbnail Image
    Glycolysis and the Pentose Phosphate Pathway Promote LPS-Induced NOX2 Oxidase- and IFN-β-Dependent Inflammation in Macrophages
    Erlich, JR ; To, EE ; Luong, R ; Liong, F ; Liong, S ; Oseghale, O ; Miles, MA ; Bozinovski, S ; Brooks, RD ; Vlahos, R ; Chan, S ; O'Leary, JJ ; Brooks, DA ; Selemidis, S (MDPI, 2022-08)
    Macrophages undergo a metabolic switch from oxidative phosphorylation to glycolysis when exposed to gram-negative bacterial lipopolysaccharide (LPS), which modulates antibacterial host defence mechanisms. Here, we show that LPS treatment of macrophages increased the classical oxidative burst response via the NADPH oxidase (NOX) 2 enzyme, which was blocked by 2-deoxyglucose (2-DG) inhibition of glycolysis. The inhibition of the pentose phosphate pathway with 6-aminonicotinamide (6-AN) also suppressed the LPS-induced increase in NOX2 activity and was associated with a significant reduction in the mRNA expression of NOX2 and its organizer protein p47phox. Notably, the LPS-dependent enhancement in NOX2 oxidase activity was independent of both succinate and mitochondrial reactive oxygen species (ROS) production. LPS also increased type I IFN-β expression, which was suppressed by 2-DG and 6-AN and, therefore, is dependent on glycolysis and the pentose phosphate pathway. The type I IFN-β response to LPS was also inhibited by apocynin pre-treatment, suggesting that NOX2-derived ROS promotes the TLR4-induced response to LPS. Moreover, recombinant IFN-β increased NOX2 oxidase-dependent ROS production, as well as NOX2 and p47phox expression. Our findings identify a previously undescribed molecular mechanism where both glycolysis and the pentose phosphate pathway are required to promote LPS-induced inflammation in macrophages.
  • Item
    Thumbnail Image
    Cigarette Smoke Exposure Induces Neurocognitive Impairments and Neuropathological Changes in the Hippocampus
    Dobric, A ; De Luca, SN ; Seow, HJ ; Wang, H ; Brassington, K ; Chan, SMH ; Mou, K ; Erlich, J ; Liong, S ; Selemidis, S ; Spencer, SJ ; Bozinovski, S ; Vlahos, R (FRONTIERS MEDIA SA, 2022-05-17)
    BACKGROUND AND OBJECTIVE: Neurocognitive dysfunction is present in up to ∼61% of people with chronic obstructive pulmonary disease (COPD), with symptoms including learning and memory deficiencies, negatively impacting the quality of life of these individuals. As the mechanisms responsible for neurocognitive deficits in COPD remain unknown, we explored whether chronic cigarette smoke (CS) exposure causes neurocognitive dysfunction in mice and whether this is associated with neuroinflammation and an altered neuropathology. METHODS: Male BALB/c mice were exposed to room air (sham) or CS (9 cigarettes/day, 5 days/week) for 24 weeks. After 23 weeks, mice underwent neurocognitive tests to assess working and spatial memory retention. At 24 weeks, mice were culled and lungs were collected and assessed for hallmark features of COPD. Serum was assessed for systemic inflammation and the hippocampus was collected for neuroinflammatory and structural analysis. RESULTS: Chronic CS exposure impaired lung function as well as driving pulmonary inflammation, emphysema, and systemic inflammation. CS exposure impaired working memory retention, which was associated with a suppression in hippocampal microglial number, however, these microglia displayed a more activated morphology. CS-exposed mice showed changes in astrocyte density as well as a reduction in synaptophysin and dendritic spines in the hippocampus. CONCLUSION: We have developed an experimental model of COPD in mice that recapitulates the hallmark features of the human disease. The altered microglial/astrocytic profiles and alterations in the neuropathology within the hippocampus may explain the neurocognitive dysfunction observed during COPD.
  • Item
    Thumbnail Image
    Glucose Homeostasis in Relation to Neutrophil Mobilization in Smokers with COPD.
    Pournaras, N ; Andersson, A ; Kovach, MA ; Padra, M ; Che, KF ; Brundin, B ; Yoshihara, S ; Bozinovski, S ; Lindén, SK ; Jansson, P-A ; Sköld, MC ; Qvarfordt, I ; Lindén, A (Informa UK Limited, 2022)
    PURPOSE: Type 2 diabetes mellitus (T2DM) and metabolic syndrome (MetS) are common comorbidities in chronic obstructive pulmonary disease (COPD), but the underlying pathogenic mechanisms are poorly understood. Given that these morbidities all display increased neutrophil mobilization, the current study aimed to address whether glucose homeostasis relates to signs of neutrophil mobilization in COPD. METHODS: The study population included healthy non-smokers (HNS) and long-term smokers without (LTS) and with COPD (LTS+COPD). No subject had T2DM or MetS. Serum cotinine was quantified to evaluate current smoking. Capillary blood glucose was measured after overnight fasting and during an oral glucose tolerance test (OGTT). Neutrophils were quantified in blood and bronchoalveolar lavage samples (BAL). The neutrophil-related cytokines IL-36α, -β and -γ were quantified (ELISA) along with IL-6, IL-8, INF-γ and CXCL10 (U-Plex®) in plasma and cell-free BAL fluid (BALF). In addition, we quantified neutrophil elastase (ELISA) and net proteinase activity (substrate assay) in BALF. RESULTS: The LTS+COPD group had lower fasting glucose, greater change in glucose during OGTT and higher neutrophil concentrations in BAL and blood compared with HNS. Fasting glucose correlated in a positive manner with blood neutrophil concentration, forced expiratory volume in 1 second/forced vital capacity ratio (FEV1/FVC) and FEV1 (% of predicted) in LTS+COPD. In this group, the concentration of IL-36α in BALF correlated in a negative manner with fasting glucose, blood neutrophil concentration and FEV1, while the CXCL10 concentration in BALF correlated in a negative manner with glucose at the end of OGTT (120 min). We observed no corresponding correlations for neutrophil elastase, net proteinase or gelatinase activity. CONCLUSION: In smokers with COPD, altered glucose homeostasis is associated with local and systemic signs of increased neutrophil mobilization, but not with local proteinases. This suggests that other specific aspects of neutrophil mobilization constitute pathogenic factors that affect glucose homeostasis in COPD.
  • Item
    Thumbnail Image
    G-CSFR antagonism reduces mucosal injury and airways fibrosis in a virus-dependent model of severe asthma
    Wang, H ; Aloe, C ; McQualter, J ; Papanicolaou, A ; Vlahos, R ; Wilson, N ; Bozinovski, S (WILEY, 2021-04)
    BACKGROUND AND PURPOSE: Asthma is a chronic disease that displays heterogeneous clinical and molecular features. A phenotypic subset of late-onset severe asthmatics has debilitating fixed airflow obstruction, increased neutrophilic inflammation and a history of pneumonia. Influenza A virus (IAV) is an important viral cause of pneumonia and asthmatics are frequently hospitalised during IAV epidemics. This study aims to determine whether antagonising granulocyte colony stimulating factor receptor (G-CSFR) prevents pneumonia-associated severe asthma. EXPERIMENTAL APPROACH: Mice were sensitised to house dust mite (HDM) to establish allergic airway inflammation and subsequently infected with IAV (HKx31/H3N2 subtype). A neutralising monoclonal antibody against G-CSFR was therapeutically administered. KEY RESULTS: In IAV-infected mice with prior HDM sensitisation, a significant increase in airway fibrotic remodelling and airways hyper-reactivity was observed. A mixed granulocytic inflammatory profile consisting of neutrophils, macrophages and eosinophils was prominent and at a molecular level, G-CSF expression was significantly increased in HDMIAV-treated mice. Blockage of G-CSFR reduced neutrophilic inflammation in the bronchoalveolar and lungs by over 80% in HDMIAV-treated mice without altering viral clearance. Markers of NETosis (dsDNA and myeloperoxidase in bronchoalveolar), tissue injury (LDH activity in bronchoalveolar) and oedema (total bronchoalveolar-fluid protein) were also significantly reduced with anti-G-CSFR treatment. In addition, anti-G-CSFR antagonism significantly reduced bronchoalveolar gelatinase activity, active TFGβ lung levels, collagen lung expression, airways fibrosis and airways hyper-reactivity in HDMIAV-treated mice. CONCLUSIONS AND IMPLICATIONS: We have shown that antagonising G-CSFR-dependent neutrophilic inflammation reduced pathological disruption of the mucosal barrier and airways fibrosis in an IAV-induced severe asthma model.
  • Item
    No Preview Available
    Novel pharmacological strategies to treat cognitive dysfunction in chronic obstructive pulmonary disease
    Dobric, A ; De Luca, SN ; Spencer, SJ ; Bozinovski, S ; Saling, MM ; McDonald, CF ; Vlahos, R (PERGAMON-ELSEVIER SCIENCE LTD, 2022-05)
    Chronic obstructive pulmonary disease (COPD) is a major incurable global health burden and currently the 3rd largest cause of death in the world, with approximately 3.23 million deaths per year. Globally, the financial burden of COPD is approximately €82 billion per year and causes substantial morbidity and mortality. Importantly, much of the disease burden and health care utilisation in COPD is associated with the management of its comorbidities and viral and bacterial-induced acute exacerbations (AECOPD). Recent clinical studies have shown that cognitive dysfunction is present in up to 60% of people with COPD, with impairments in executive function, memory, and attention, impacting on important outcomes such as quality of life, hospitalisation and survival. The high prevalence of cognitive dysfunction in COPD may also help explain the insufficient adherence to therapeutic plans and strategies, thus worsening disease progression in people with COPD. However, the mechanisms underlying the impaired neuropathology and cognition in COPD remain largely unknown. In this review, we propose that the observed pulmonary oxidative burden and inflammatory response of people with COPD 'spills over' into the systemic circulation, resulting in damage to the brain and leading to cognitive dysfunction. As such, drugs targeting the lungs and comorbidities concurrently represent an exciting and unique therapeutic opportunity to treat COPD and cognitive impairments, which may lead to the production of novel targets to prevent and reverse the debilitating and life-threatening effects of cognitive dysfunction in COPD.
  • Item
    Thumbnail Image
    Programmed Death-Ligand 1 Copy Number Loss in NSCLC Associates With Reduced Programmed Death-Ligand 1 Tumor Staining and a Cold Immunophenotype
    Aujla, S ; Aloe, C ; Vannitamby, A ; Hendry, S ; Rangamuwa, K ; Wang, H ; Vlahos, R ; Selemidis, S ; Leong, T ; Steinfort, D ; Bozinovski, S (ELSEVIER SCIENCE INC, 2022-05)
    INTRODUCTION: Programmed death-ligand 1 (PD-L1) copy number gains may be predictive of clinical response to immunotherapy in NSCLC. This study investigated PD-L1 copy number variations in tumor resection and bronchoscopy biopsies and its relationship with PD-L1 tumor cell staining and inflammatory gene expression. METHODS: PD-L1 gene copy number and mRNA expression were evaluated by real-time polymerase chain reaction in surgically resected NSCLC tumor biopsies (n = 87) and control biopsies (n = 20). A second cohort (n = 15) of bronchoscopy-derived tumor biopsies was analyzed, including multiple biopsies from the same patient across different anatomical sites. RESULTS: PD-L1 mRNA levels strongly correlated with PD-L1 tumor staining (r = 0.55, p < 0.0001). Interferon-γ mRNA expression associated with PD-L1 immune cell staining, but not PD-L1 tumor cell staining. In contrast, PD-L1 copy number positively associated PD-L1 tumor staining, but not PD-L1 immune cell staining. PD-L1 copy number analysis detected loss (15 of 87 = 17%) and gain (5 of 87 = 7%) of copy number. Tumors with low PD-L1 copy number expressed significantly reduced levels of inflammatory (interferon-γ, interleukin [IL]-6, IL-1β, MMP-9) and immunosuppressive (IL-10, transforming growth factor β) mediators. Analysis of bronchoscopy-derived biopsies revealed low heterogeneity in copy number values across different anatomical sites, in contrast to more variable PD-L1 mRNA expression. CONCLUSIONS: Low PD-L1 copy number tumors display reduced PD-L1 expression, reduced PD-L1 tumor cell staining, and an immunologic cold tumor microenvironment. Because PD-L1 copy number values are highly stable across different tumor regions, its evaluation may represent a robust and complimentary biomarker for predicting response to immunotherapy, where low copy number may predict lack of response.