Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 13
  • Item
    Thumbnail Image
    Multidrug-Resistant Salmonella enterica, Serotype Typhi, Gulf of Guinea Region, Africa
    Baltazar, M ; Ngandjio, A ; Holt, KE ; Lepillet, E ; Pardos de la Gandara, M ; Collard, J-M ; Bercion, R ; Nzouankeu, A ; Le Hello, S ; Dougan, G ; Fonkoua, M-C ; Weill, F-X (CENTERS DISEASE CONTROL, 2015-04)
    We identified 3 lineages among multidrug-resistant (MDR) Salmonella enterica serotype Typhi isolates in the Gulf of Guinea region in Africa during the 2000s. However, the MDR H58 haplotype, which predominates in southern Asia and Kenya, was not identified. MDR quinolone-susceptible isolates contained a 190-kb incHI1 pST2 plasmid or a 50-kb incN pST3 plasmid.
  • Item
    No Preview Available
    Shigella sonnei genome sequencing and phylogenetic analysis indicate recent global dissemination from Europe
    Holt, KE ; Baker, S ; Weill, F-X ; Holmes, EC ; Kitchen, A ; Yu, J ; Sangal, V ; Brown, DJ ; Coia, JE ; Kim, DW ; Choi, SY ; Kim, SH ; da Silveira, WD ; Pickard, DJ ; Farrar, JJ ; Parkhill, J ; Dougan, G ; Thomson, NR (NATURE PORTFOLIO, 2012-09)
    Shigella are human-adapted Escherichia coli that have gained the ability to invade the human gut mucosa and cause dysentery(1,2), spreading efficiently via low-dose fecal-oral transmission(3,4). Historically, S. sonnei has been predominantly responsible for dysentery in developed countries but is now emerging as a problem in the developing world, seeming to replace the more diverse Shigella flexneri in areas undergoing economic development and improvements in water quality(4-6). Classical approaches have shown that S. sonnei is genetically conserved and clonal(7). We report here whole-genome sequencing of 132 globally distributed isolates. Our phylogenetic analysis shows that the current S. sonnei population descends from a common ancestor that existed less than 500 years ago and that diversified into several distinct lineages with unique characteristics. Our analysis suggests that the majority of this diversification occurred in Europe and was followed by more recent establishment of local pathogen populations on other continents, predominantly due to the pandemic spread of a single, rapidly evolving, multidrug-resistant lineage.
  • Item
    Thumbnail Image
    Identification of a marker for two lineages within the GC1 clone of Acinetobacter baumannii
    Hamidian, M ; Wynn, M ; Holt, KE ; Pickard, D ; Dougan, G ; Hall, RM (OXFORD UNIV PRESS, 2014-02)
  • Item
    Thumbnail Image
    Characterization of the yehUT Two-Component Regulatory System of Salmonella enterica Serovar Typhi and Typhimurium
    Wong, VK ; Pickard, DJ ; Barquist, L ; Sivaraman, K ; Page, AJ ; Hart, PJ ; Arends, MJ ; Holt, KE ; Kane, L ; Mottram, LF ; Ellison, L ; Bautista, R ; McGee, CJ ; Kay, SJ ; Wileman, TM ; Kenney, LJ ; MacLennan, CA ; Kingsley, RA ; Dougan, G ; Cloeckaert, A (PUBLIC LIBRARY SCIENCE, 2013-12-30)
    Proteins exhibiting hyper-variable sequences within a bacterial pathogen may be associated with host adaptation. Several lineages of the monophyletic pathogen Salmonella enterica serovar Typhi (S. Typhi) have accumulated non-synonymous mutations in the putative two-component regulatory system yehUT. Consequently we evaluated the function of yehUT in S. Typhi BRD948 and S. Typhimurium ST4/74. Transcriptome analysis identified the cstA gene, encoding a carbon starvation protein as the predominantly yehUT regulated gene in both these serovars. Deletion of yehUT had no detectable effect on the ability of these mutant Salmonella to invade cultured epithelial cells (S. Typhi and S. Typhimurium) or induce colitis in a murine model (S. Typhimurium only). Growth, metabolic and antimicrobial susceptibility tests identified no obvious influences of yehUT on these phenotypes.
  • Item
    Thumbnail Image
    Genome and Transcriptome Adaptation Accompanying Emergence of the Definitive Type 2 Host-Restricted Salmonella enterica Serovar Typhimurium Pathovar
    Kingsley, RA ; Kay, S ; Connor, T ; Barquist, L ; Sait, L ; Holt, KE ; Sivaraman, K ; Wileman, T ; Goulding, D ; Clare, S ; Hale, C ; Seshasayee, A ; Harris, S ; Thomson, NR ; Gardner, P ; Rabsch, W ; Wigley, P ; Humphrey, T ; Parkhill, J ; Dougan, G ; Finlay, BB (AMER SOC MICROBIOLOGY, 2013-08-27)
    Salmonella enterica serovar Typhimurium definitive type 2 (DT2) is host restricted to Columba livia (rock or feral pigeon) but is also closely related to S. Typhimurium isolates that circulate in livestock and cause a zoonosis characterized by gastroenteritis in humans. DT2 isolates formed a distinct phylogenetic cluster within S. Typhimurium based on whole-genome-sequence polymorphisms. Comparative genome analysis of DT2 94-213 and S. Typhimurium SL1344, DT104, and D23580 identified few differences in gene content with the exception of variations within prophages. However, DT2 94-213 harbored 22 pseudogenes that were intact in other closely related S. Typhimurium strains. We report a novel in silico approach to identify single amino acid substitutions in proteins that have a high probability of a functional impact. One polymorphism identified using this method, a single-residue deletion in the Tar protein, abrogated chemotaxis to aspartate in vitro. DT2 94-213 also exhibited an altered transcriptional profile in response to culture at 42°C compared to that of SL1344. Such differentially regulated genes included a number involved in flagellum biosynthesis and motility. IMPORTANCE Whereas Salmonella enterica serovar Typhimurium can infect a wide range of animal species, some variants within this serovar exhibit a more limited host range and altered disease potential. Phylogenetic analysis based on whole-genome sequences can identify lineages associated with specific virulence traits, including host adaptation. This study represents one of the first to link pathogen-specific genetic signatures, including coding capacity, genome degradation, and transcriptional responses to host adaptation within a Salmonella serovar. We performed comparative genome analysis of reference and pigeon-adapted definitive type 2 (DT2) S. Typhimurium isolates alongside phenotypic and transcriptome analyses, to identify genetic signatures linked to host adaptation within the DT2 lineage.
  • Item
    Thumbnail Image
    An Outpatient, Ambulant-Design, Controlled Human Infection Model Using Escalating Doses of Salmonella Typhi Challenge Delivered in Sodium Bicarbonate Solution
    Waddington, CS ; Darton, TC ; Jones, C ; Haworth, K ; Peters, A ; John, T ; Thompson, BAV ; Kerridge, SA ; Kingsley, RA ; Zhou, L ; Holt, KE ; Yu, L-M ; Lockhart, S ; Farrar, JJ ; Sztein, MB ; Dougan, G ; Angus, B ; Levine, MM ; Pollard, AJ (OXFORD UNIV PRESS INC, 2014-05-01)
    BACKGROUND: Typhoid fever is a major global health problem, the control of which is hindered by lack of a suitable animal model in which to study Salmonella Typhi infection. Until 1974, a human challenge model advanced understanding of typhoid and was used in vaccine development. We set out to establish a new human challenge model and ascertain the S. Typhi (Quailes strain) inoculum required for an attack rate of 60%-75% in typhoid-naive volunteers when ingested with sodium bicarbonate solution. METHODS: Groups of healthy consenting adults ingested escalating dose levels of S. Typhi and were closely monitored in an outpatient setting for 2 weeks. Antibiotic treatment was initiated if typhoid diagnosis occurred (temperature ≥38°C sustained ≥12 hours or bacteremia) or at day 14 in those remaining untreated. RESULTS: Two dose levels (10(3) or 10(4) colony-forming units) were required to achieve the primary objective, resulting in attack rates of 55% (11/20) or 65% (13/20), respectively. Challenge was well tolerated; 4 of 40 participants fulfilled prespecified criteria for severe infection. Most diagnoses (87.5%) were confirmed by blood culture, and asymptomatic bacteremia and stool shedding of S. Typhi was also observed. Participants who developed typhoid infection demonstrated serological responses to flagellin and lipopolysaccharide antigens by day 14; however, no anti-Vi antibody responses were detected. CONCLUSIONS: Human challenge with a small inoculum of virulent S. Typhi administered in bicarbonate solution can be performed safely using an ambulant-model design to advance understanding of host-pathogen interactions and immunity. This model should expedite development of diagnostics, vaccines, and therapeutics for typhoid control.
  • Item
    Thumbnail Image
    An extended genotyping framework for Salmonella enterica serovar Typhi, the cause of human typhoid
    Wong, VK ; Baker, S ; Connor, TR ; Pickard, D ; Page, AJ ; Dave, J ; Murphy, N ; Holliman, R ; Sefton, A ; Millar, M ; Dyson, ZA ; Dougan, G ; Holt, KE (NATURE PORTFOLIO, 2016-10-05)
    The population of Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, exhibits limited DNA sequence variation, which complicates efforts to rationally discriminate individual isolates. Here we utilize data from whole-genome sequences (WGS) of nearly 2,000 isolates sourced from over 60 countries to generate a robust genotyping scheme that is phylogenetically informative and compatible with a range of assays. These data show that, with the exception of the rapidly disseminating H58 subclade (now designated genotype 4.3.1), the global S. Typhi population is highly structured and includes dozens of subclades that display geographical restriction. The genotyping approach presented here can be used to interrogate local S. Typhi populations and help identify recent introductions of S. Typhi into new or previously endemic locations, providing information on their likely geographical source. This approach can be used to classify clinical isolates and provides a universal framework for further experimental investigations.
  • Item
    Thumbnail Image
    High-Resolution Genotyping of the Endemic Salmonella Typhi Population during a Vi (Typhoid) Vaccination Trial in Kolkata
    Holt, KE ; Dutta, S ; Manna, B ; Bhattacharya, SK ; Bhaduri, B ; Pickard, DJ ; Ochiai, RL ; Ali, M ; Clemens, JD ; Dougan, G ; Vinetz, JM (PUBLIC LIBRARY SCIENCE, 2012-01)
    BACKGROUND: Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a major health problem especially in developing countries. Vaccines against typhoid are commonly used by travelers but less so by residents of endemic areas. METHODOLOGY: We used single nucleotide polymorphism (SNP) typing to investigate the population structure of 372 S. Typhi isolated during a typhoid disease burden study and Vi vaccine trial in Kolkata, India. Approximately sixty thousand people were enrolled for fever surveillance for 19 months prior to, and 24 months following, Vi vaccination of one third of the study population (May 2003-December 2006, vaccinations given December 2004). PRINCIPAL FINDINGS: A diverse S. Typhi population was detected, including 21 haplotypes. The most common were of the H58 haplogroup (69%), which included all multidrug resistant isolates (defined as resistance to chloramphenicol, ampicillin and co-trimoxazole). Quinolone resistance was particularly high among H58-G isolates (97% Nalidixic acid resistant, 30% with reduced susceptibility to ciprofloxacin). Multiple typhoid fever episodes were detected in 22 households, however household clustering was not associated with specific S. Typhi haplotypes. CONCLUSIONS: Typhoid fever in Kolkata is caused by a diverse population of S. Typhi, however H58 haplotypes dominate and are associated with multidrug and quinolone resistance. Vi vaccination did not obviously impact on the haplotype population structure of the S. Typhi circulating during the study period.
  • Item
    No Preview Available
    Molecular Surveillance Identifies Multiple Transmissions of Typhoid in West Africa
    Wong, VK ; Holt, KE ; Okoro, C ; Baker, S ; Pickard, DJ ; Marks, F ; Page, AJ ; Olanipekun, G ; Munir, H ; Alter, R ; Fey, PD ; Feasey, NA ; Weill, F-X ; Le Hello, S ; Hart, PJ ; Kariuki, S ; Breiman, RF ; Gordon, MA ; Heyderman, RS ; Jacobs, J ; Lunguya, O ; Msefula, C ; MacLennan, CA ; Keddy, KH ; Smith, AM ; Onsare, RS ; De Pinna, E ; Nair, S ; Amos, B ; Dougan, G ; Obaro, S ; Ryan, ET (PUBLIC LIBRARY SCIENCE, 2016-09)
    BACKGROUND: The burden of typhoid in sub-Saharan African (SSA) countries has been difficult to estimate, in part, due to suboptimal laboratory diagnostics. However, surveillance blood cultures at two sites in Nigeria have identified typhoid associated with Salmonella enterica serovar Typhi (S. Typhi) as an important cause of bacteremia in children. METHODS: A total of 128 S. Typhi isolates from these studies in Nigeria were whole-genome sequenced, and the resulting data was used to place these Nigerian isolates into a worldwide context based on their phylogeny and carriage of molecular determinants of antibiotic resistance. RESULTS: Several distinct S. Typhi genotypes were identified in Nigeria that were related to other clusters of S. Typhi isolates from north, west and central regions of Africa. The rapidly expanding S. Typhi clade 4.3.1 (H58) previously associated with multiple antimicrobial resistances in Asia and in east, central and southern Africa, was not detected in this study. However, antimicrobial resistance was common amongst the Nigerian isolates and was associated with several plasmids, including the IncHI1 plasmid commonly associated with S. Typhi. CONCLUSIONS: These data indicate that typhoid in Nigeria was established through multiple independent introductions into the country, with evidence of regional spread. MDR typhoid appears to be evolving independently of the haplotype H58 found in other typhoid endemic countries. This study highlights an urgent need for routine surveillance to monitor the epidemiology of typhoid and evolution of antimicrobial resistance within the bacterial population as a means to facilitate public health interventions to reduce the substantial morbidity and mortality of typhoid.
  • Item
    Thumbnail Image
    Five decades of genome evolution in the globally distributed, extensively antibiotic-resistant Acinetobacter baumannii global clone 1
    Holt, K ; Kenyon, JJ ; Hamidian, M ; Schultz, MB ; Pickard, DJ ; Dougan, G ; Hall, R (MICROBIOLOGY SOC, 2016-02)
    The majority of Acinetobacter baumannii isolates that are multiply, extensively and pan-antibiotic resistant belong to two globally disseminated clones, GC1 and GC2, that were first noticed in the 1970s. Here, we investigated microevolution and phylodynamics within GC1 via analysis of 45 whole-genome sequences, including 23 sequenced for this study. The most recent common ancestor of GC1 arose around 1960 and later diverged into two phylogenetically distinct lineages. In the 1970s, the main lineage acquired the AbaR resistance island, conferring resistance to older antibiotics, via a horizontal gene transfer event. We estimate a mutation rate of ∼5 SNPs genome- 1 year- 1 and detected extensive recombination within GC1 genomes, introducing nucleotide diversity into the population at >20 times the substitution rate (the ratio of SNPs introduced by recombination compared with mutation was 22). The recombination events were non-randomly distributed in the genome and created significant diversity within loci encoding outer surface molecules (including the capsular polysaccharide, the outer core lipooligosaccharide and the outer membrane protein CarO), and spread antimicrobial resistance-conferring mutations affecting the gyrA and parC genes and insertion sequence insertions activating the ampC gene. Both GC1 lineages accumulated resistance to newer antibiotics through various genetic mechanisms, including the acquisition of plasmids and transposons or mutations in chromosomal genes. Our data show that GC1 has diversified into multiple successful extensively antibiotic-resistant subclones that differ in their surface structures. This has important implications for all avenues of control, including epidemiological tracking, antimicrobial therapy and vaccination.