Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends
    Selig, EE ; Lynn, RJ ; Zlatic, CO ; Mok, Y-F ; Ecroyd, H ; Gooley, PR ; Griffin, MDW (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2022-08-30)
    Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions. The ACD forms antiparallel homodimers via an extended β-strand, creating a shared β-sheet at the dimer interface. The N- and C-terminal regions mediate formation of higher order oligomers that are thought to act as storage forms for chaperone-active dimers. We investigated the interactions of the ACD of two human sHSPs, αB-crystallin (αB-C) and Hsp27, with apolipoprotein C-II amyloid fibrils using analytical ultracentrifugation and nuclear magnetic resonance spectroscopy. The ACD was found to interact transiently with amyloid fibrils to inhibit fibril elongation and naturally occurring fibril end-to-end joining. This interaction was sensitive to the concentration of fibril ends indicating a 'fibril-capping' interaction. Furthermore, resonances arising from the ACD monomer were attenuated to a greater extent than those of the ACD dimer in the presence of fibrils, suggesting that the monomer may bind fibrils. This hypothesis was supported by mutagenesis studies in which disulfide cross-linked ACD dimers formed by both αB-C and Hsp27 were less effective at inhibiting amyloid fibril elongation and fibril end-to-end joining than ACD constructs lacking disulfide cross-linking. Our results indicate that sHSP monomers inhibit amyloid fibril elongation, highlighting the importance of the dynamic oligomeric nature of sHSPs for client binding.
  • Item
    Thumbnail Image
    Polymorphism in disease-related apolipoprotein C-II amyloid fibrils: a structural model for rod-like fibrils
    Zlatic, CO ; Mao, Y ; Todorova, N ; Mok, Y-F ; Howlett, GJ ; Yarovsky, I ; Gooley, PR ; Griffin, MDW (WILEY, 2018-08)
    Human apolipoprotein (apo) C-II is one of several plasma apolipoproteins that form amyloid deposits in vivo and is an independent risk factor for cardiovascular disease. Lipid-free apoC-II readily self-assembles into twisted-ribbon amyloid fibrils but forms straight, rod-like amyloid fibrils in the presence of low concentrations of micellar phospholipids. Charge mutations exerted significantly different effects on rod-like fibril formation compared to their effects on twisted-ribbon fibril formation. For instance, the double mutant, K30D-D69K apoC-II, readily formed twisted-ribbon fibrils, while the rate of rod-like fibril formation in the presence of micellar phospholipid was negligible. Structural analysis of rod-like apoC-II fibrils, using hydrogen-deuterium exchange and NMR analysis showed exchange protection consistent with a core cross-β structure comprising the C-terminal 58-76 region. Molecular dynamics simulations of fibril arrangements for this region favoured a parallel cross-β structure. X-ray fibre diffraction data for aligned rod-like fibrils showed a major meridional spacing at 4.6 Å and equatorial spacings at 9.7, 23.8 and 46.6 Å. The latter two equatorial spacings are not observed for aligned twisted-ribbon fibrils and are predicted for a model involving two cross-β fibrils in an off-set antiparallel structure with four apoC-II units per rise of the β-sheet. This model is consistent with the mutational effects on rod-like apoC-II fibril formation. The lipid-dependent polymorphisms exhibited by apoC-II fibrils could determine the properties of apoC-II in renal amyloid deposits and their potential role in the development of cardiovascular disease.
  • Item
    Thumbnail Image
    A Cyclic Peptide Inhibitor of ApoC-II Peptide Fibril Formation: Mechanistic Insight from NMR and Molecular Dynamics Analysis
    Griffin, MDW ; Yeung, L ; Hung, A ; Todorova, N ; Mok, Y-F ; Karas, JA ; Gooley, PR ; Yarovsky, I ; Howlett, GJ (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2012-03-09)
    The misfolding and aggregation of proteins to form amyloid fibrils is a characteristic feature of several common age-related diseases. Agents that directly inhibit formation of amyloid fibrils represent one approach to combating these diseases. We have investigated the potential of a cyclic peptide to inhibit fibril formation by fibrillogenic peptides from human apolipoprotein C-II (apoC-II). Cyc[60-70] was formed by disulfide cross-linking of cysteine residues added to the termini of the fibrillogenic peptide comprising apoC-II residues 60-70. This cyclic peptide did not self-associate into fibrils. However, substoichiometric concentrations of cyc[60-70] significantly delayed fibril formation by the fibrillogenic, linear peptides apoC-II[60-70] and apoC-II[56-76]. Reduction of the disulfide bond or scrambling the amino acid sequence within cyc[60-70] significantly impaired its inhibitory activity. The solution structure of cyc[60-70] was solved using NMR spectroscopy, revealing a well-defined structure comprising a hydrophilic face and a more hydrophobic face containing the Met60, Tyr63, Ile66 and Phe67 side chains. Molecular dynamics (MD) studies identified a flexible central region within cyc[60-70], while MD simulations of "scrambled" cyc[60-70] indicated an increased formation of intramolecular hydrogen bonds and a reduction in the overall flexibility of the peptide. Our structural studies suggest that the inhibitory activity of cyc[60-70] is mediated by an elongated structure with inherent flexibility and distinct hydrophobic and hydrophilic faces, enabling cyc[60-70] to interact transiently with fibrillogenic peptides and inhibit fibril assembly. These results suggest that cyclic peptides based on amyloidogenic core peptides could be useful as specific inhibitors of amyloid fibril formation.
  • Item
    No Preview Available
    AMP-Activated Protein Kinase β-Subunit Requires Internal Motion for Optimal Carbohydrate Binding
    Bieri, M ; Mobbs, JI ; Koay, A ; Louey, G ; Mok, Y-F ; Hatters, DM ; Park, J-T ; Park, K-H ; Neumann, D ; Stapleton, D ; Gooley, PR (CELL PRESS, 2012-01-18)
    AMP-activated protein kinase interacts with oligosaccharides and glycogen through the carbohydrate-binding module (CBM) containing the β-subunit, for which there are two isoforms (β(1) and β(2)). Muscle-specific β(2)-CBM, either as an isolated domain or in the intact enzyme, binds carbohydrates more tightly than the ubiquitous β(1)-CBM. Although residues that contact carbohydrate are strictly conserved, an additional threonine in a loop of β(2)-CBM is concurrent with an increase in flexibility in β(2)-CBM, which may account for the affinity differences between the two isoforms. In contrast to β(1)-CBM, unbound β(2)-CBM showed microsecond-to-millisecond motion at the base of a β-hairpin that contains residues that make critical contacts with carbohydrate. Upon binding to carbohydrate, similar microsecond-to-millisecond motion was observed in this β-hairpin and the loop that contains the threonine insertion. Deletion of the threonine from β(2)-CBM resulted in reduced carbohydrate affinity. Although motion was retained in the unbound state, a significant loss of motion was observed in the bound state of the β(2)-CBM mutant. Insertion of a threonine into the background of β(1)-CBM resulted in increased ligand affinity and flexibility in these loops when bound to carbohydrate. However, these mutations indicate that the additional threonine is not solely responsible for the differences in carbohydrate affinity and protein dynamics. Nevertheless, these results suggest that altered protein dynamics may contribute to differences in the ligand affinity of the two naturally occurring CBM isoforms.