Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Structures of the interleukin 11 signalling complex reveal gp130 dynamics and the inhibitory mechanism of a cytokine variant
    Metcalfe, RD ; Hanssen, E ; Fung, KY ; Aizel, K ; Kosasih, CC ; Zlatic, CO ; Doughty, L ; Morton, CJ ; Leis, AP ; Parker, MW ; Gooley, PR ; Putoczki, TL ; Griffin, MDW (NATURE PORTFOLIO, 2023-11-20)
    Interleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family β-receptor, gp130. We show that complex formation requires conformational reorganisation of IL-11 and that the membrane-proximal domains of gp130 are dynamic. We demonstrate that the cytokine mutant, IL-11 Mutein, competitively inhibits signalling in human cell lines. Structural shifts in IL-11 Mutein underlie inhibition by altering cytokine binding interactions at all three receptor-engaging sites and abrogating the final gp130 binding step. Our results reveal the structural basis of IL-11 signalling, define the molecular mechanisms of an inhibitor, and advance understanding of gp130-containing receptor complexes, with potential applications in therapeutic development.
  • Item
    Thumbnail Image
    Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome
    Xie, SC ; Metcalfe, RD ; Mizutani, H ; Puhalovich, T ; Hanssen, E ; Morton, CJ ; Du, Y ; Dogovski, C ; Huang, S-C ; Ciavarri, J ; Hales, P ; Griffin, RJ ; Cohen, LH ; Chuang, B-C ; Wittlin, S ; Deni, I ; Yeo, T ; Ward, KE ; Barry, DC ; Liu, B ; Gillett, DL ; Crespo-Fernandez, BF ; Ottilie, S ; Mittal, N ; Churchyard, A ; Ferguson, D ; Aguiar, ACC ; Guido, RVC ; Baum, J ; Hanson, KK ; Winzeler, EA ; Gamo, F-J ; Fidock, DA ; Baud, D ; Parker, MW ; Brand, S ; Dick, LR ; Griffin, MDW ; Gould, AE ; Tilley, L (NATL ACAD SCIENCES, 2021-09-28)
    The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) β5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.