Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 4 of 4
  • Item
    Thumbnail Image
    Tracking protein aggregation and mislocalization in cells with flow cytometry
    Ramdzan, YM ; Polling, S ; Chia, CPZ ; Ng, IHW ; Ormsby, AR ; Croft, NP ; Purcell, AW ; Bogoyevitch, MA ; Ng, DCH ; Gleeson, PA ; Hatters, DM (NATURE PUBLISHING GROUP, 2012-05)
    We applied pulse-shape analysis (PulSA) to monitor protein localization changes in mammalian cells by flow cytometry. PulSA enabled high-throughput tracking of protein aggregation, translocation from the cytoplasm to the nucleus and trafficking from the plasma membrane to the Golgi as well as stress-granule formation. Combining PulSA with tetracysteine-based oligomer sensors in a cell model of Huntington's disease enabled further separation of cells enriched with monomers, oligomers and inclusion bodies.
  • Item
    Thumbnail Image
    A Platform to View Huntingtin Exon 1 Aggregation Flux in the Cell Reveals Divergent Influences from Chaperones hsp40 and hsp70
    Ormsby, AR ; Ramdzan, YM ; Mok, Y-F ; Jovanoski, KD ; Hatters, DM (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2013-12-27)
    Our capacity for tracking how misfolded proteins aggregate inside a cell and how different aggregation states impact cell biology remains enigmatic. To address this, we built a new toolkit that enabled the high throughput tracking of individual cells enriched with polyglutamine-expanded Htt exon 1 (Httex1) monomers, oligomers, and inclusions using biosensors of aggregation state and flow cytometry pulse shape analysis. Supplemented with gel filtration chromatography and fluorescence-adapted sedimentation velocity analysis of cell lysates, we collated a multidimensional view of Httex1 aggregation in cells with respect to time, polyglutamine length, expression levels, cell survival, and overexpression of protein quality control chaperones hsp40 (DNAJB1) and hsp70 (HSPA1A). Cell death rates trended higher for Neuro2a cells containing Httex1 in inclusions than with Httex1 dispersed through the cytosol at time points of expression over 2 days. hsp40 stabilized monomers and suppressed inclusion formation but did not otherwise change Httex1 toxicity. hsp70, however, had no major effect on aggregation of Httex1 but increased the survival rate of cells with inclusions. hsp40 and hsp70 also increased levels of a second bicistronic reporter of Httex1 expression, mKate2, and increased total numbers of cells in culture, suggesting these chaperones partly rectify Httex1-induced deficiencies in quality control and growth rates. Collectively, these data suggest that Httex1 overstretches the protein quality control resources and that the defects can be partly rescued by overexpression of hsp40 and hsp70. Importantly, these effects occurred in a pronounced manner for soluble Httex1, which points to Httex1 aggregation occurring subsequently to more acute impacts on the cell.
  • Item
    Thumbnail Image
    Polyalanine expansions drive a shift into α-helical clusters without amyloid-fibril formation
    Polling, S ; Ormsby, AR ; Wood, RJ ; Lee, K ; Shoubridge, C ; Hughes, JN ; Thomas, PQ ; Griffin, MDW ; Hill, AF ; Bowden, Q ; Boecking, T ; Hatters, DM (NATURE PUBLISHING GROUP, 2015-12)
    Polyglutamine (polyGln) expansions in nine human proteins result in neurological diseases and induce the proteins' tendency to form β-rich amyloid fibrils and intracellular deposits. Less well known are at least nine other human diseases caused by polyalanine (polyAla)-expansion mutations in different proteins. The mechanisms of how polyAla aggregates under physiological conditions remain unclear and controversial. We show here that aggregation of polyAla is mechanistically dissimilar to that of polyGln and hence does not exhibit amyloid kinetics. PolyAla assembled spontaneously into α-helical clusters with diverse oligomeric states. Such clustering was pervasive in cells irrespective of visible aggregate formation, and it disrupted the normal physiological oligomeric state of two human proteins natively containing polyAla: ARX and SOX3. This self-assembly pattern indicates that polyAla expansions chronically disrupt protein behavior by imposing a deranged oligomeric status.
  • Item
    Thumbnail Image
    Tyrosine 416 Is Phosphorylated in the Closed, Repressed Conformation of c-Src
    Irtegun, S ; Wood, RJ ; Ormsby, AR ; Mulhern, TD ; Hatters, DM ; Lewis, P (PUBLIC LIBRARY SCIENCE, 2013-07-26)
    c-Src kinase activity is regulated by phosphorylation of Y527 and Y416. Y527 phosphorylation stabilizes a closed conformation, which suppresses kinase activity towards substrates, whereas phosphorylation at Y416 promotes an elevated kinase activity by stabilizing the activation loop in a manner permissive for substrate binding. Here we investigated the correlation of Y416 phosphorylation with c-Src activity when c-Src was locked into the open and closed conformations (by mutations Y527F and Q528E, P529E, G530I respectively). Consistent with prior findings, we found Y416 to be more greatly phosphorylated when c-Src was in an open, active conformation. However, we also observed an appreciable amount of Y416 was phosphorylated when c-Src was in a closed, repressed conformation under conditions by which c-Src was unable to phosphorylate substrate STAT3. The phosphorylation of Y416 in the closed conformation arose by autophosphorylation, since abolishing kinase activity by mutating the ATP binding site (K295M) prevented phosphorylation. Basal Y416 phosphorylation correlated positively with cellular levels of c-Src suggesting autophosphorylation depended on self-association. Using sedimentation velocity analysis on cell lysate with fluorescence detection optics, we confirmed that c-Src forms monomers and dimers, with the open conformation also forming a minor population of larger mass complexes. Collectively, our studies suggest a model by which dimerization of c-Src primes c-Src via Y416 phosphorylation to enable rapid potentiation of activity when Src adopts an open conformation. Once in the open conformation, c-Src can amplify the response by recruiting and phosphorylating substrates such as STAT3 and increasing the extent of autophosphorylation.