Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 29
  • Item
    Thumbnail Image
    Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation
    Kalra, H ; Simpson, RJ ; Ji, H ; Aikawa, E ; Altevogt, P ; Askenase, P ; Bond, VC ; Borras, FE ; Breakefield, X ; Budnik, V ; Buzas, E ; Camussi, G ; Clayton, A ; Cocucci, E ; Falcon-Perez, JM ; Gabrielsson, S ; Gho, YS ; Gupta, D ; Harsha, HC ; Hendrix, A ; Hill, AF ; Inal, JM ; Jenster, G ; Kraemer-Albers, E-M ; Lim, SK ; Llorente, A ; Lotvall, J ; Marcilla, A ; Mincheva-Nilsson, L ; Nazarenko, I ; Nieuwland, R ; Nolte-'t Hoen, ENM ; Pandey, A ; Patel, T ; Piper, MG ; Pluchino, S ; Prasad, TSK ; Rajendran, L ; Raposo, G ; Record, M ; Reid, GE ; Sanchez-Madrid, F ; Schiffelers, RM ; Siljander, P ; Stensballe, A ; Stoorvogel, W ; Taylor, D ; Thery, C ; Valadi, H ; van Balkom, BWM ; Vazquez, J ; Vidal, M ; Wauben, MHM ; Yanez-Mo, M ; Zoeller, M ; Mathivanan, S (PUBLIC LIBRARY SCIENCE, 2012-12)
    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.
  • Item
    Thumbnail Image
    Elevation in Sphingomyelin Synthase Activity Is Associated with Increases in Amyloid-Beta Peptide Generation
    Hsiao, J-HT ; Fu, Y ; Hill, AF ; Halliday, GM ; Kim, WS ; Ginsberg, SD (PUBLIC LIBRARY SCIENCE, 2013-08-20)
    A pathological hallmark of Alzheimer's disease (AD) is the presence of amyloid-beta peptide (Aβ) plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP), a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis) in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.
  • Item
    Thumbnail Image
    Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood
    Cheng, L ; Sharples, RA ; Scicluna, BJ ; Hill, AF (TAYLOR & FRANCIS LTD, 2014)
    INTRODUCTION: microRNA (miRNA) are small non-coding RNA species that are transcriptionally processed in the host cell and released extracellularly into the bloodstream. Normally involved in post-transcriptional gene silencing, the deregulation of miRNA has been shown to influence pathogenesis of a number of diseases. BACKGROUND: Next-generation deep sequencing (NGS) has provided the ability to profile miRNA in biological fluids making this approach a viable screening tool to detect miRNA biomarkers. However, collection and handling procedures of blood needs to be greatly improved for miRNA analysis in order to reliably detect differences between healthy and disease patients. Furthermore, ribonucleases present in blood can degrade RNA upon collection rendering extracellular miRNA at risk of degradation. These factors have consequently decreased sensitivity and specificity of miRNA biomarker assays. METHODS: Here, we use NGS to profile miRNA in various blood components and identify differences in profiles within peripheral blood compared to cell-free plasma or serum and extracellular vesicles known as exosomes. We also analyse and compare the miRNA content in exosomes prepared by ultracentrifugation methods and commercial exosome isolation kits including treating samples with RNaseA. CONCLUSION: This study demonstrates that exosomal RNA is protected by RNaseA treatment and that exosomes provide a consistent source of miRNA for disease biomarker detection.
  • Item
    Thumbnail Image
    Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.
    Lötvall, J ; Hill, AF ; Hochberg, F ; Buzás, EI ; Di Vizio, D ; Gardiner, C ; Gho, YS ; Kurochkin, IV ; Mathivanan, S ; Quesenberry, P ; Sahoo, S ; Tahara, H ; Wauben, MH ; Witwer, KW ; Théry, C (Wiley, 2014)
    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.
  • Item
    Thumbnail Image
    ISEV position paper: extracellular vesicle RNA analysis and bioinformatics.
    Hill, AF ; Pegtel, DM ; Lambertz, U ; Leonardi, T ; O'Driscoll, L ; Pluchino, S ; Ter-Ovanesyan, D ; Nolte-'t Hoen, ENM (Wiley, 2013)
    Extracellular vesicles (EVs) are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA) has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV) held a workshop on "evRNA analysis and bioinformatics." Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.
  • Item
    Thumbnail Image
    Prion Infection Impairs Cholesterol Metabolism in Neuronal Cells
    Cui, HL ; Guo, B ; Scicluna, B ; Coleman, BM ; Lawson, VA ; Ellett, L ; Meikle, PJ ; Bukrinsky, M ; Mukhamedova, N ; Sviridov, D ; Hill, AF (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2014-01-10)
    Conversion of prion protein (PrP(C)) into a pathological isoform (PrP(Sc)) during prion infection occurs in lipid rafts and is dependent on cholesterol. Here, we show that prion infection increases the abundance of cholesterol transporter, ATP-binding cassette transporter type A1 (ATP-binding cassette transporter type A1), but reduces cholesterol efflux from neuronal cells leading to the accumulation of cellular cholesterol. Increased abundance of ABCA1 in prion disease was confirmed in prion-infected mice. Mechanistically, conversion of PrP(C) to the pathological isoform led to PrP(Sc) accumulation in rafts, displacement of ABCA1 from rafts and the cell surface, and enhanced internalization of ABCA1. These effects were abolished with reversal of prion infection or by loading cells with cholesterol. Stimulation of ABCA1 expression with liver X receptor agonist or overexpression of heterologous ABCA1 reduced the conversion of prion protein into the pathological form upon infection. These findings demonstrate a reciprocal connection between prion infection and cellular cholesterol metabolism, which plays an important role in the pathogenesis of prion infection in neuronal cells.
  • Item
    Thumbnail Image
    iSRAP - a one-touch research tool for rapid profiling of small RNA-seq data
    Quek, C ; Jung, C-H ; Bellingham, SA ; Lonie, A ; Hill, AF (TAYLOR & FRANCIS LTD, 2015)
    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.
  • Item
    Thumbnail Image
    Applying extracellular vesicles based therapeutics in clinical trials - an ISEV position paper
    Lener, T ; Gimona, M ; Aigner, L ; Boerger, V ; Buzas, E ; Camussi, G ; Chaput, N ; Chatterjee, D ; Court, FA ; del Portillo, HA ; O'Driscoll, L ; Fais, S ; Falcon-Perez, JM ; Felderhoff-Mueser, U ; Fraile, L ; Gho, YS ; Goergens, A ; Gupta, RC ; Hendrix, A ; Hermann, DM ; Hill, AF ; Hochberg, F ; Horn, PA ; de Kleijn, D ; Kordelas, L ; Kramer, BW ; Kraemer-Albers, E-M ; Laner-Plamberger, S ; Laitinen, S ; Leonardi, T ; Lorenowicz, MJ ; Lim, SK ; Lotvall, J ; Maguire, CA ; Marcilla, A ; Nazarenko, I ; Ochiya, T ; Patel, T ; Pedersen, S ; Pocsfalvi, G ; Pluchino, S ; Quesenberry, P ; Reischl, IG ; Rivera, FJ ; Sanzenbacher, R ; Schallmoser, K ; Slaper-Cortenbach, I ; Strunk, D ; Tonn, T ; Vader, P ; van Balkom, BWM ; Wauben, M ; El Andaloussi, S ; Thery, C ; Rohde, E ; Giebel, B (TAYLOR & FRANCIS LTD, 2015)
    Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result of these properties, EVs of defined cell types may serve as novel tools for various therapeutic approaches, including (a) anti-tumour therapy, (b) pathogen vaccination, (c) immune-modulatory and regenerative therapies and (d) drug delivery. The translation of EVs into clinical therapies requires the categorization of EV-based therapeutics in compliance with existing regulatory frameworks. As the classification defines subsequent requirements for manufacturing, quality control and clinical investigation, it is of major importance to define whether EVs are considered the active drug components or primarily serve as drug delivery vehicles. For an effective and particularly safe translation of EV-based therapies into clinical practice, a high level of cooperation between researchers, clinicians and competent authorities is essential. In this position statement, basic and clinical scientists, as members of the International Society for Extracellular Vesicles (ISEV) and of the European Cooperation in Science and Technology (COST) program of the European Union, namely European Network on Microvesicles and Exosomes in Health and Disease (ME-HaD), summarize recent developments and the current knowledge of EV-based therapies. Aspects of safety and regulatory requirements that must be considered for pharmaceutical manufacturing and clinical application are highlighted. Production and quality control processes are discussed. Strategies to promote the therapeutic application of EVs in future clinical studies are addressed.
  • Item
    Thumbnail Image
    The prion protein constitutively controls neuronal store-operated Ca2+ entry through Fyn kinase
    De Mario, A ; Castellani, A ; Peggion, C ; Massimino, ML ; Lim, D ; Hill, AF ; Sorgato, MC ; Bertoli, A (FRONTIERS MEDIA SA, 2015-10-28)
    The prion protein (PrP(C)) is a cell surface glycoprotein mainly expressed in neurons, whose misfolded isoforms generate the prion responsible for incurable neurodegenerative disorders. Whereas PrP(C) involvement in prion propagation is well established, PrP(C) physiological function is still enigmatic despite suggestions that it could act in cell signal transduction by modulating phosphorylation cascades and Ca(2+) homeostasis. Because PrP(C) binds neurotoxic protein aggregates with high-affinity, it has also been proposed that PrP(C) acts as receptor for amyloid-β (Aβ) oligomers associated with Alzheimer's disease (AD), and that PrP(C)-Aβ binding mediates AD-related synaptic dysfunctions following activation of the tyrosine kinase Fyn. Here, use of gene-encoded Ca(2+) probes targeting different cell domains in primary cerebellar granule neurons (CGN) expressing, or not, PrP(C), allowed us to investigate whether PrP(C) regulates store-operated Ca(2+) entry (SOCE) and the implication of Fyn in this control. Our findings show that PrP(C) attenuates SOCE, and Ca(2+) accumulation in the cytosol and mitochondria, by constitutively restraining Fyn activation and tyrosine phosphorylation of STIM1, a key molecular component of SOCE. This data establishes the existence of a PrP(C)-Fyn-SOCE triad in neurons. We also demonstrate that treating cerebellar granule and cortical neurons with soluble Aβ(1-42) oligomers abrogates the control of PrP(C) over Fyn and SOCE, suggesting a PrP(C)-dependent mechanizm for Aβ-induced neuronal Ca(2+) dyshomeostasis.
  • Item
    Thumbnail Image
    Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells - Evidence of unique microRNA cargos
    Lunavat, TR ; Cheng, L ; Kim, D-K ; Bhadury, J ; Jang, SC ; Lasser, C ; Sharples, RA ; Lopez, MD ; Nilsson, J ; Gho, YS ; Hill, AF ; Lotvall, J (TAYLOR & FRANCIS INC, 2015-08-03)
    Melanoma cells release different types of extracellular vesicles (EVs) into the extracellular milieu that are involved with communication and signaling in the tumor microenvironment. Subsets of EVs include exosomes, microvesicles, and apoptotic bodies that carry protein and genetic (RNA) cargos. To define the contribution of the RNA cargo of melanoma cell derived EVs we performed small RNA sequencing to identify different small RNAs in the EV subsets. Using validated centrifugation protocols, we separated these EV subsets released by the melanoma cell line MML-1, and performed RNA sequencing with the Ion Torrent platform. Various, but different, non-coding RNAs were detected in the EV subsets, including microRNA, mitochondrial associated tRNA, small nucleolar RNA, small nuclear RNA, Ro associated Y-RNA, vault RNA and Y-RNA. We identified in total 1041 miRNAs in cells and EV subsets. Hierarchical clustering showed enrichment of specific miRNAs in exosomes, including hsa-miR-214-3p, hsa-miR-199a-3p and hsa-miR-155-5p, all being associated with melanoma progression. Comparison of exosomal miRNAs with miRNAs in clinical melanoma samples indicate that multiple miRNAs in exosomes also are expressed specifically in melanoma tissues, but not in benign naevi. This study shows for the first time the presence of distinct small RNAs in subsets of EVs released by melanoma cells, with significant similarities to clinical melanoma tissue, and provides unique insights into the contribution of EV associated extracellular RNA in cancer.