Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Adaptive Change Inferred from Genomic Population Analysis of the ST93 Epidemic Clone of Community-Associated Methicillin-Resistant Staphylococcus aureus
    Stinear, TP ; Holt, KE ; Chua, K ; Stepnell, J ; Tuck, KL ; Coombs, G ; Harrison, PF ; Seemann, T ; Howden, BP (OXFORD UNIV PRESS, 2014)
    Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has emerged as a major public health problem around the world. In Australia, ST93-IV[2B] is the dominant CA-MRSA clone and displays significantly greater virulence than other S. aureus. Here, we have examined the evolution of ST93 via genomic analysis of 12 MSSA and 44 MRSA ST93 isolates, collected from around Australia over a 17-year period. Comparative analysis revealed a core genome of 2.6 Mb, sharing greater than 99.7% nucleotide identity. The accessory genome was 0.45 Mb and comprised additional mobile DNA elements, harboring resistance to erythromycin, trimethoprim, and tetracycline. Phylogenetic inference revealed a molecular clock and suggested that a single clone of methicillin susceptible, Panton-Valentine leukocidin (PVL) positive, ST93 S. aureus likely spread from North Western Australia in the early 1970s, acquiring methicillin resistance at least twice in the mid 1990s. We also explored associations between genotype and important MRSA phenotypes including oxacillin MIC and production of exotoxins (α-hemolysin [Hla], δ-hemolysin [Hld], PSMα3, and PVL). High-level expression of Hla is a signature feature of ST93 and reduced expression in eight isolates was readily explained by mutations in the agr locus. However, subtle but significant decreases in Hld were also noted over time that coincided with decreasing oxacillin resistance and were independent of agr mutations. The evolution of ST93 S. aureus is thus associated with a reduction in both exotoxin expression and oxacillin MIC, suggesting MRSA ST93 isolates are under pressure for adaptive change.
  • Item
    Thumbnail Image
    In silico serotyping of E. coli from short read data identifies limited novel O-loci but extensive diversity of O:H serotype combinations within and between pathogenic lineages
    Ingle, DJ ; Valcanis, M ; Kuzevski, A ; Tauschek, M ; Inouye, M ; Stinear, T ; Levine, MM ; Robins-Browne, RM ; Holt, KE (MICROBIOLOGY SOC, 2016-07)
    The lipopolysaccharide (O) and flagellar (H) surface antigens of Escherichia coli are targets for serotyping that have traditionally been used to identify pathogenic lineages. These surface antigens are important for the survival of E. coli within mammalian hosts. However, traditional serotyping has several limitations, and public health reference laboratories are increasingly moving towards whole genome sequencing (WGS) to characterize bacterial isolates. Here we present a method to rapidly and accurately serotype E. coli isolates from raw, short read WGS data. Our approach bypasses the need for de novo genome assembly by directly screening WGS reads against a curated database of alleles linked to known and novel E. coli O-groups and H-types (the EcOH database) using the software package srst2. We validated the approach by comparing in silico results for 197 enteropathogenic E. coli isolates with those obtained by serological phenotyping in an independent laboratory. We then demonstrated the utility of our method to characterize isolates in public health and clinical settings, and to explore the genetic diversity of >1500 E. coli genomes from multiple sources. Importantly, we showed that transfer of O- and H-antigen loci between E. coli chromosomal backbones is common, with little evidence of constraints by host or pathotype, suggesting that E. coli 'strain space' may be virtually unlimited, even within specific pathotypes. Our findings show that serotyping is most useful when used in combination with strain genotyping to characterize microevolution events within an inferred population structure.
  • Item
    Thumbnail Image
    On the origin of Mycobacterium ulcerans, the causative agent of Buruli ulcer
    Doig, KD ; Holt, KE ; Fyfe, JAM ; Lavender, CJ ; Eddyani, M ; Portaels, F ; Yeboah-Manu, D ; Pluschke, G ; Seemann, T ; Stinear, TP (BMC, 2012-06-19)
    BACKGROUND: Mycobacterium ulcerans is an unusual bacterial pathogen with elusive origins. While closely related to the aquatic dwelling M. marinum, M. ulcerans has evolved the ability to produce the immunosuppressive polyketide toxin mycolactone and cause the neglected tropical disease Buruli ulcer. Other mycolactone-producing mycobacteria (MPM) have been identified in fish and frogs and given distinct species designations (M. pseudoshottsii, M. shinshuense, M. liflandii and M. marinum), however the evolution of M. ulcerans and its relationship to other MPM has not been defined. Here we report the comparative analysis of whole genome sequences from 30 MPM and five M. marinum. RESULTS: A high-resolution phylogeny based on genome-wide single nucleotide polymorphisms (SNPs) showed that M. ulcerans and all other MPM represent a single clonal group that evolved from a common M. marinum progenitor. The emergence of the MPM was driven by the acquisition of the pMUM plasmid encoding genes for the biosynthesis of mycolactones. This change was accompanied by the loss of at least 185 genes, with a significant overrepresentation of genes associated with cell wall functions. Cell wall associated genes also showed evidence of substantial adaptive selection, suggesting cell wall remodeling has been critical for the survival of MPM. Fine-grain analysis of the MPM complex revealed at least three distinct lineages, one of which comprised a highly clonal group, responsible for Buruli ulcer in Africa and Australia. This indicates relatively recent transfer of M. ulcerans between these continents, which represent the vast majority of the global Buruli ulcer burden. Our data provide SNPs and gene sequences that can differentiate M. ulcerans lineages, suitable for use in the diagnosis and surveillance of Buruli ulcer. CONCLUSIONS: M. ulcerans and all mycolactone-producing mycobacteria are specialized variants of a common Mycobacterium marinum progenitor that have adapted to live in restricted environments. Examination of genes lost or retained and now under selective pressure suggests these environments might be aerobic, and extracellular, where slow growth, production of an immune suppressor, cell wall remodeling, loss or modification of cell wall antigens, and biofilm-forming ability provide a survival advantage. These insights will guide our efforts to find the elusive reservoir(s) of M. ulcerans and to understand transmission of Buruli ulcer.
  • Item
    Thumbnail Image
    Precision Medicine: Dawn of Supercomputing in ‘omics Research
    Reumann, M ; Holt, KE ; Inouye, M ; Stinear, T ; Goudey, B ; Abraham, G ; WANG, Q ; Shi, F ; Kowalczyk, A ; Pearce, A ; Isaac, A ; Pope, BJ ; Butzkueven, H ; Wagner, J ; Moore, S ; Downton, M ; Church, PC ; Turner, SJ ; Field, J ; Southey, M ; Bowtell, D ; Schmidt, D ; Makalic, E ; Zobel, J ; Hopper, J ; Petrovski, S ; O'Brien, T (eResearch Australasia, 2011)
  • Item
    Thumbnail Image
    Convergent Adaptation in the Dominant Global Hospital Clone ST239 of Methicillin-Resistant Staphylococcus aureus
    Baines, SL ; Holt, KE ; Schultz, MB ; Seemann, T ; Howden, BO ; Jensen, SO ; van Hal, SJ ; Coombs, GW ; Firth, N ; Powell, DR ; Stinear, TP ; Howden, BP ; Gilligan, P ; Fowler, V (AMER SOC MICROBIOLOGY, 2015-03-03)
    UNLABELLED: Infections caused by highly successful clones of hospital-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) are a major public health burden. The globally dominant sequence type 239 (ST239) HA-MRSA clone has persisted in the health care setting for decades, but the basis of its success has not been identified. Taking a collection of 123 ST239 isolates spanning 32 years, we have used population-based functional genomics to investigate the evolution of this highly persistent and successful clone. Phylogenetic reconstruction and population modeling uncovered a previously unrecognized distinct clade of ST239 that was introduced into Australia from Asia and has perpetuated the epidemic in this region. Functional analysis demonstrated attenuated virulence and enhanced resistance to last-line antimicrobials, the result of two different phenomena, adaptive evolution within the original Australian ST239 clade and the introduction of a new clade displaying shifts in both phenotypes. The genetic diversity between the clades allowed us to employ genome-wide association testing and identify mutations in other essential regulatory systems, including walKR, that significantly associate with and may explain these key phenotypes. The phenotypic convergence of two independently evolving ST239 clades highlights the very strong selective pressures acting on HA-MRSA, showing that hospital environments have favored the accumulation of mutations in essential MRSA genes that increase resistance to antimicrobials, attenuate virulence, and promote persistence in the health care environment. Combinations of comparative genomics and careful phenotypic measurements of longitudinal collections of clinical isolates are giving us the knowledge to intelligently address the impact of current and future antibiotic usage policies and practices on hospital pathogens globally. IMPORTANCE: Methicillin-resistant Staphylococcus aureus (MRSA) is responsible for innumerable drug-resistant health care-associated infections globally. This study, the first to investigate the evolutionary response of hospital-associated MRSA (HA-MRSA) over many decades, demonstrates how MRSA can persist in a region through the reintroduction of a previously unrecognized distinct clade. This study also demonstrates the crucial adaptive responses of HA-MRSA to the highly selective environment of the health care system, the evolution of MRSA isolates to even higher levels of antibiotic resistance at the cost of attenuated virulence. However, in vivo persistence is maintained, resulting in a clone of HA-MRSA able to resist almost all antimicrobial agents and still cause invasive disease in the heavily compromised hosts found in modern health care settings.