Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Synthesis and structure-activity relationships of teixobactin
    Karas, JA ; Chen, F ; Schneider-Futschik, EK ; Kang, Z ; Hussein, M ; Swarbrick, J ; Hoyer, D ; Giltrap, AM ; Payne, RJ ; Li, J ; Velkov, T (WILEY, 2020-01)
    The discovery of antibiotics has led to the effective treatment of bacterial infections that were otherwise fatal and has had a transformative effect on modern medicine. Teixobactin is an unusual depsipeptide natural product that was recently discovered from a previously unculturable soil bacterium and found to possess potent antibacterial activity against several Gram positive pathogens, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. One of the key features of teixobactin as an antibiotic lead is that resistance could not be generated in a laboratory setting. This is proposed to be a result of a mechanism of action that involves binding to essential cell wall synthesis building blocks, lipid II and lipid III. Since the initial isolation report in 2015, significant efforts have been made to understand its unique mechanism of action, develop efficient synthetic routes for its production, and thus enable the generation of analogues for structure-activity relationship studies and optimization of its pharmacological properties. Our review provides a comprehensive treatise on the progress in understanding teixobactin chemistry, structure-activity relationships, and mechanisms of antibacterial activity. Teixobactin represents an exciting starting point for the development of new antibiotics that can be used to combat multidrug-resistant bacterial ("superbug") infections.
  • Item
    Thumbnail Image
    The impact of backbone N-methylation on the structure-activity relationship of Leu10-teixobactin
    Velkov, T ; Swarbrick, JD ; Hussein, MH ; Schneider-Futschik, EK ; Hoyer, D ; Li, J ; Karas, JA (WILEY, 2019-09)
    Antimicrobial resistance is a serious threat to global human health; therefore, new anti-infective therapeutics are required. The cyclic depsi-peptide teixobactin exhibits potent antimicrobial activity against several Gram-positive pathogens. To study the natural product's mechanism of action and improve its pharmacological properties, efficient chemical methods for preparing teixobactin analogues are required to expedite structure-activity relationship studies. Described herein is a synthetic route that enables rapid access to analogues. Furthermore, our new N-methylated analogues highlight that hydrogen bonding along the N-terminal tail is likely to be important for antimicrobial activity.