Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 19
  • Item
    Thumbnail Image
    Type I interferon antagonism of the JMJD3-IRF4 pathway modulates macrophage activation and polarization
    Lee, KM-C ; Achuthan, AA ; De Souza, DP ; Lupancu, TJ ; Binger, KJ ; Lee, MKS ; Xu, Y ; McConville, MJ ; de Weerd, NA ; Dragoljevic, D ; Hertzog, PJ ; Murphy, AJ ; Hamilton, JA ; Fleetwood, AJ (CELL PRESS, 2022-04-19)
    Metabolic adaptations can directly influence the scope and scale of macrophage activation and polarization. Here we explore the impact of type I interferon (IFNβ) on macrophage metabolism and its broader impact on cytokine signaling pathways. We find that IFNβ simultaneously increased the expression of immune-responsive gene 1 and itaconate production while inhibiting isocitrate dehydrogenase activity and restricting α-ketoglutarate accumulation. IFNβ also increased the flux of glutamine-derived carbon into the tricarboxylic acid cycle to boost succinate levels. Combined, we identify that IFNβ controls the cellular α-ketoglutarate/succinate ratio. We show that by lowering the α-ketoglutarate/succinate ratio, IFNβ potently blocks the JMJD3-IRF4-dependent pathway in GM-CSF and IL-4 activated macrophages. The suppressive effects of IFNβ on JMJD3-IRF4-dependent responses, including M2 polarization and GM-CSF-induced inflammatory pain, were reversed by supplementation with α-ketoglutarate. These results reveal that IFNβ modulates macrophage activation and polarization through control of the cellular α-ketoglutarate/succinate ratio.
  • Item
    No Preview Available
    Function of hTim8a in complex IV assembly in neuronal cells provides insight into pathomechanism underlying Mohr-Tranebjaerg syndrome (vol 8, e48828, 2020)
    Kang, Y ; Anderson, AJ ; Jackson, TD ; Palmer, CS ; De Souza, DP ; Fujihara, KM ; Stait, T ; Frazier, AE ; Clemons, NJ ; Tull, D ; Thorburn, DR ; McConville, MJ ; Ryan, MT ; Stroud, DA ; Stojanovski, D (ELIFE SCIENCES PUBLICATIONS LTD, 2020-03-18)
  • Item
    Thumbnail Image
    Lipidomic Profiling of Adipose Tissue Reveals an Inflammatory Signature in Cancer-Related and Primary Lymphedema
    Sedger, LM ; Tull, DL ; McConville, MJ ; De Souza, DP ; Rupasinghe, TWT ; Williams, SJ ; Dayalan, S ; Lanzer, D ; Mackie, H ; Lam, TC ; Boyages, J ; Maya-Monteiro, CM (PUBLIC LIBRARY SCIENCE, 2016-05-16)
    Cancer-related and primary lymphedema (LE) are associated with the production of adipose tissue (AT). Nothing is known, however, about the lipid-based molecules that comprise LE AT. We therefore analyzed lipid molecules in lipoaspirates and serum obtained from LE patients, and compared them to lipoaspirates from cosmetic surgery patients and healthy control cohort serum. LE patient serum analysis demonstrated that triglycerides, HDL- and LDL-cholesterol and lipid transport molecules remained within the normal range, with no alterations in individual fatty acids. The lipidomic analysis also identified 275 lipid-based molecules, including triacylglycerides, diacylglycerides, fatty acids and phospholipids in AT oil and fat. Although the majority of lipid molecules were present in a similar abundance in LE and non-LE samples, there were several small changes: increased C20:5-containing triacylglycerides, reduced C10:0 caprinic and C24:1 nervonic acids. LE AT oil also contained a signature of increased cyclopropane-type fatty acids and inflammatory mediators arachidonic acid and ceramides. Interestingly C20:5 and C22:6 omega-3-type lipids are increased in LE AT, correlating with LE years. Hence, LE AT has a normal lipid profile containing a signature of inflammation and omega-3-lipids. It remains unclear, however, whether these differences reflect a small-scale global metabolic disturbance or effects within localised inflammatory foci.
  • Item
    Thumbnail Image
    Reversing diet-induced metabolic dysregulation by diet switching leads to altered hepatic de novo lipogenesis and glycerolipid synthesis
    Kowalski, GM ; Hamley, S ; Selathurai, A ; Kloehn, J ; De Souza, DP ; O'Callaghan, S ; Nijagal, B ; Tull, DL ; McConville, MJ ; Bruce, CR (NATURE PORTFOLIO, 2016-06-07)
    In humans, low-energy diets rapidly reduce hepatic fat and improve/normalise glycemic control. Due to difficulties in obtaining human liver, little is known about changes to the lipid species and pathway fluxes that occur under these conditions. Using a combination of stable isotope, and targeted metabolomic approaches we investigated the acute (7-9 days) hepatic effects of switching high-fat high-sucrose diet (HFD) fed obese mice back to a chow diet. Upon the switch, energy intake was reduced, resulting in reductions of fat mass and hepatic triacyl- and diacylglycerol. However, these parameters were still elevated compared to chow fed mice, thus representing an intermediate phenotype. Nonetheless, glucose intolerance and hyperinsulinemia were completely normalized. The diet reversal resulted in marked reductions in hepatic de novo lipogenesis when compared to the chow and HFD groups. Compared with HFD, glycerolipid synthesis was reduced in the reversal animals, however it remained elevated above that of chow controls, indicating that despite experiencing a net loss in lipid stores, the liver was still actively esterifying available fatty acids at rates higher than that in chow control mice. This effect likely promotes the re-esterification of excess free fatty acids released from the breakdown of adipose depots during the weight loss period.
  • Item
    Thumbnail Image
    Talaromyces marneffei simA Encodes a Fungal Cytochrome P450 Essential for Survival in Macrophages
    Boyce, KJ ; De Souza, DP ; Dayalan, S ; Pasricha, S ; Tull, D ; McConville, MJ ; Andrianopoulos, A ; Mitchell, AP (AMER SOC MICROBIOLOGY, 2018)
    Fungi are adept at occupying specific environmental niches and often exploit numerous secondary metabolites generated by the cytochrome P450 (CYP) monoxygenases. This report describes the characterization of a yeast-specific CYP encoded by simA ("survival in macrophages"). Deletion of simA does not affect yeast growth at 37°C in vitro but is essential for yeast cell production during macrophage infection. The ΔsimA strain exhibits reduced conidial germination and intracellular growth of yeast in macrophages, suggesting that the enzymatic product of SimA is required for normal fungal growth in vivo. Intracellular ΔsimA yeast cells exhibit cell wall defects, and metabolomic and chemical sensitivity data suggest that SimA may promote chitin synthesis or deposition in vitro. In vivo, ΔsimA yeast cells subsequently lyse and are degraded, suggesting that SimA may increase resistance to and/or suppress host cell biocidal effectors. The results suggest that simA synthesizes a secondary metabolite that allows T. marneffei to occupy the specific intracellular environmental niche within the macrophage. IMPORTANCE This study in a dimorphic fungal pathogen uncovered a role for a yeast-specific cytochrome P450 (CYP)-encoding gene in the ability of T. marneffei to grow as yeast cells within the host macrophages. This report will inspire further research into the role of CYPs and secondary metabolite synthesis during fungal pathogenic growth.
  • Item
    Thumbnail Image
    Mus musculus deficient for secretory antibodies show delayed growth with an altered urinary metabolome
    Simpfendorfer, KR ; Wang, N ; Tull, DL ; De Souza, DP ; Nahid, A ; Mu, A ; Hocking, DM ; Pedersen, JS ; Wijburg, OLC ; McConville, MJ ; Strugnell, RA (SPRINGER, 2019-04-03)
    BACKGROUND: The polymeric immunoglobulin receptor (pIgR) maintains the integrity of epithelial barriers by transporting polymeric antibodies and antigens through the epithelial mucosa into the lumen. In this study, we examined the role of pIgR in maintaining gut barrier integrity, which is important for the normal development in mice. METHODS: Cohorts of pIgR-/- mice and their wildtype controls were housed under Specific Pathogen Free (SPF) conditions and monitored for weight gain as an indicator of development over time. The general physiology of the gastrointestinal tract was analysed using immunohistochemistry in young (8-12 weeks of age) and aged mice (up to 18 months of age), and the observed immunopathology in pIgR-/- mice was further characterised using flow cytometry. Urinary metabolites were analysed using gas chromatography-mass spectrometry (GC-MS), which revealed changes in metabolites that correlated with age-related increase in gut permeability in pIgR-/- mice. RESULTS: We observed that pIgR-/- mice exhibited delayed growth, and this phenomenon is associated with low-grade gut inflammation that increased with ageing. The gross intraepithelial lymphocytic (IEL) infiltration characteristic of pIgR-/- mice was redefined as CD8α+αβ+ T cells, the majority of which expressed high levels of CD103 and CD69 consistent with tissue resident memory T cells (TRM). Comparison of the urinary metabolome between pIgR-/- and wild-type mice revealed key changes in urinary biomarkers fucose, glycine and Vitamin B5, suggestive of altered mucosal permeability. A significant increase in gut permeability was confirmed by analysing the site-specific uptake of sugar probes in different parts of the intestine. CONCLUSION: Our data show that loss of the secretory antibody system in mice results in enhanced accumulation of inflammatory IELs in the gut, which likely reflects ongoing inflammation in reaction to gut microbiota or food antigens, leading to delayed growth in pIgR-/- mice. We demonstrate that this leads to the presence of a unique urinary metabolome profile, which may provide a biomarker for altered gut permeability.
  • Item
    Thumbnail Image
    Reprogrammed mRNA translation drives resistance to therapeutic targeting of ribosome biogenesis
    Kusnadi, EP ; Trigos, AS ; Cullinane, C ; Goode, DL ; Larsson, O ; Devlin, JR ; Chan, KT ; De Souza, DP ; McConville, MJ ; McArthur, GA ; Thomas, G ; Sanij, E ; Poortinga, G ; Hannan, RD ; Hannan, KM ; Kang, J ; Pearson, RB (WILEY, 2020-11-02)
    Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.
  • Item
    Thumbnail Image
    NLRP1 restricts butyrate producing commensals to exacerbate inflammatory bowel disease
    Tye, H ; Yu, C-H ; Simms, LA ; de Zoete, MR ; Kim, ML ; Zakrzewski, M ; Penington, JS ; Harapas, CR ; Souza-Fonseca-Guimaraes, F ; Wockner, LF ; Preaudet, A ; Mielke, LA ; Wilcox, SA ; Ogura, Y ; Corr, SC ; Kanojia, K ; Kouremenos, KA ; De Souza, DP ; McConville, MJ ; Flavell, RA ; Gerlic, M ; Kile, BT ; Papenfuss, AT ; Putoczki, TL ; Radford-Smith, GL ; Masters, SL (NATURE PUBLISHING GROUP, 2018-09-13)
    Anti-microbial signaling pathways are normally triggered by innate immune receptors when detecting pathogenic microbes to provide protective immunity. Here we show that the inflammasome sensor Nlrp1 aggravates DSS-induced experimental mouse colitis by limiting beneficial, butyrate-producing Clostridiales in the gut. The colitis-protective effects of Nlrp1 deficiency are thus reversed by vancomycin treatment, but recapitulated with butyrate supplementation in wild-type mice. Moreover, an activating mutation in Nlrp1a increases IL-18 and IFNγ production, and decreases colonic butyrate to exacerbate colitis. We also show that, in patients with ulcerative colitis, increased NLRP1 in inflamed regions of the colon is associated with increased IFN-γ. In this context, NLRP1, IL-18 or IFN-γ expression negatively correlates with the abundance of Clostridiales in human rectal mucosal biopsies. Our data identify the NLRP1 inflammasome to be a key negative regulator of protective, butyrate-producing commensals, which therefore promotes inflammatory bowel disease.
  • Item
    Thumbnail Image
    Circadian and wake-dependent changes in human plasma polar metabolites during prolonged wakefulness: A preliminary analysis
    Grant, LK ; Ftouni, S ; Nijagal, B ; De Souza, DP ; Tull, D ; McConville, MJ ; Rajaratnam, SMW ; Lockley, SW ; Anderson, C (NATURE PORTFOLIO, 2019-03-14)
    Establishing circadian and wake-dependent changes in the human metabolome are critical for understanding and treating human diseases due to circadian misalignment or extended wake. Here, we assessed endogenous circadian rhythms and wake-dependent changes in plasma metabolites in 13 participants (4 females) studied during 40-hours of wakefulness. Four-hourly plasma samples were analyzed by hydrophilic interaction liquid chromatography (HILIC)-LC-MS for 1,740 metabolite signals. Group-averaged (relative to DLMO) and individual participant metabolite profiles were fitted with a combined cosinor and linear regression model. In group-level analyses, 22% of metabolites were rhythmic and 8% were linear, whereas in individual-level analyses, 14% of profiles were rhythmic and 4% were linear. We observed metabolites that were significant at the group-level but not significant in a single individual, and metabolites that were significant in approximately half of individuals but not group-significant. Of the group-rhythmic and group-linear metabolites, only 7% and 12% were also significantly rhythmic or linear, respectively, in ≥50% of participants. Owing to large inter-individual variation in rhythm timing and the magnitude and direction of linear change, acrophase and slope estimates also differed between group- and individual-level analyses. These preliminary findings have important implications for biomarker development and understanding of sleep and circadian regulation of metabolism.
  • Item
    Thumbnail Image
    Function of hTim8a in complex IV assembly in neuronal cells provides insight into pathomechanism underlying Mohr-Tranebjaerg syndrome
    Kang, Y ; Anderson, AJ ; Jackson, TD ; Palmer, CS ; De Souza, DP ; Fujihara, KM ; Stait, T ; Frazier, AE ; Clemons, NJ ; Tull, D ; Thorburn, DR ; McConville, MJ ; Ryan, MT ; Stroud, DA ; Stojanovski, D (ELIFE SCIENCES PUBLICATIONS LTD, 2019-11-04)
    Human Tim8a and Tim8b are members of an intermembrane space chaperone network, known as the small TIM family. Mutations in TIMM8A cause a neurodegenerative disease, Mohr-Tranebjærg syndrome (MTS), which is characterised by sensorineural hearing loss, dystonia and blindness. Nothing is known about the function of hTim8a in neuronal cells or how mutation of this protein leads to a neurodegenerative disease. We show that hTim8a is required for the assembly of Complex IV in neurons, which is mediated through a transient interaction with Complex IV assembly factors, in particular the copper chaperone COX17. Complex IV assembly defects resulting from loss of hTim8a leads to oxidative stress and changes to key apoptotic regulators, including cytochrome c, which primes cells for death. Alleviation of oxidative stress with Vitamin E treatment rescues cells from apoptotic vulnerability. We hypothesise that enhanced sensitivity of neuronal cells to apoptosis is the underlying mechanism of MTS.