Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 8 of 8
  • Item
    Thumbnail Image
    The Monomeric α-Crystallin Domain of the Small Heat-shock Proteins αB-crystallin and Hsp27 Binds Amyloid Fibril Ends
    Selig, EE ; Lynn, RJ ; Zlatic, CO ; Mok, Y-F ; Ecroyd, H ; Gooley, PR ; Griffin, MDW (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2022-08-30)
    Small heat-shock proteins (sHSPs) are ubiquitously expressed molecular chaperones present in all kingdoms of life that inhibit protein misfolding and aggregation. Despite their importance in proteostasis, the structure-function relationships of sHSPs remain elusive. Human sHSPs are characterised by a central, highly conserved α-crystallin domain (ACD) and variable-length N- and C-terminal regions. The ACD forms antiparallel homodimers via an extended β-strand, creating a shared β-sheet at the dimer interface. The N- and C-terminal regions mediate formation of higher order oligomers that are thought to act as storage forms for chaperone-active dimers. We investigated the interactions of the ACD of two human sHSPs, αB-crystallin (αB-C) and Hsp27, with apolipoprotein C-II amyloid fibrils using analytical ultracentrifugation and nuclear magnetic resonance spectroscopy. The ACD was found to interact transiently with amyloid fibrils to inhibit fibril elongation and naturally occurring fibril end-to-end joining. This interaction was sensitive to the concentration of fibril ends indicating a 'fibril-capping' interaction. Furthermore, resonances arising from the ACD monomer were attenuated to a greater extent than those of the ACD dimer in the presence of fibrils, suggesting that the monomer may bind fibrils. This hypothesis was supported by mutagenesis studies in which disulfide cross-linked ACD dimers formed by both αB-C and Hsp27 were less effective at inhibiting amyloid fibril elongation and fibril end-to-end joining than ACD constructs lacking disulfide cross-linking. Our results indicate that sHSP monomers inhibit amyloid fibril elongation, highlighting the importance of the dynamic oligomeric nature of sHSPs for client binding.
  • Item
    Thumbnail Image
    The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties
    Mills, RD ; Liang, L-Y ; Lio, DS-S ; Mok, Y-F ; Mulhern, TD ; Cao, G ; Griffin, M ; Kenche, VB ; Culvenor, JG ; Cheng, H-C (WILEY, 2018-11)
    The Parkinson's disease (PD)-causative leucine-rich repeat kinase 2 (LRRK2) belongs to the Roco family of G-proteins comprising a Ras-of-complex (Roc) domain followed by a C-terminal of Roc (COR) domain in tandem (called Roc-COR domain). Two prokaryotic Roc-COR domains have been characterized as 'G proteins activated by guanine nucleotide-dependent dimerization' (GADs), which require dimerization for activation of their GTPase activity and bind guanine nucleotides with relatively low affinities. Additionally, LRRK2 Roc domain in isolation binds guanine nucleotides with relatively low affinities. As such, LRRK2 GTPase domain was predicted to be a GAD. Herein, we describe the design and high-level expression of human LRRK2 Roc-COR domain (LRRK2 Roc-COR). Biochemical analyses of LRRK2 Roc-COR reveal that it forms homodimers, with the C-terminal portion of COR mediating its dimerization. Furthermore, it co-purifies and binds Mg2+ GTP/GDP at 1 : 1 stoichiometry, and it hydrolyzes GTP with Km  and kcat  of 22 nM and 4.70 × 10-4  min-1 ,  respectively. Thus, even though LRRK2 Roc-COR forms GAD-like homodimers, it exhibits conventional Ras-like GTPase properties, with high-affinity binding of Mg2+ -GTP/GDP and low intrinsic catalytic activity. The PD-causative Y1699C mutation mapped to the COR domain was previously reported to reduce the GTPase activity of full-length LRRK2. In contrast, this mutation induces no change in the GTPase activity, and only slight perturbations in the secondary structure contents of LRRK2 Roc-COR. As this mutation does not directly affect the GTPase activity of the isolated Roc-COR tandem, it is possible that the effects of this mutation on full-length LRRK2 occur via other functional domains. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
  • Item
    Thumbnail Image
    Polymorphism in disease-related apolipoprotein C-II amyloid fibrils: a structural model for rod-like fibrils
    Zlatic, CO ; Mao, Y ; Todorova, N ; Mok, Y-F ; Howlett, GJ ; Yarovsky, I ; Gooley, PR ; Griffin, MDW (WILEY, 2018-08)
    Human apolipoprotein (apo) C-II is one of several plasma apolipoproteins that form amyloid deposits in vivo and is an independent risk factor for cardiovascular disease. Lipid-free apoC-II readily self-assembles into twisted-ribbon amyloid fibrils but forms straight, rod-like amyloid fibrils in the presence of low concentrations of micellar phospholipids. Charge mutations exerted significantly different effects on rod-like fibril formation compared to their effects on twisted-ribbon fibril formation. For instance, the double mutant, K30D-D69K apoC-II, readily formed twisted-ribbon fibrils, while the rate of rod-like fibril formation in the presence of micellar phospholipid was negligible. Structural analysis of rod-like apoC-II fibrils, using hydrogen-deuterium exchange and NMR analysis showed exchange protection consistent with a core cross-β structure comprising the C-terminal 58-76 region. Molecular dynamics simulations of fibril arrangements for this region favoured a parallel cross-β structure. X-ray fibre diffraction data for aligned rod-like fibrils showed a major meridional spacing at 4.6 Å and equatorial spacings at 9.7, 23.8 and 46.6 Å. The latter two equatorial spacings are not observed for aligned twisted-ribbon fibrils and are predicted for a model involving two cross-β fibrils in an off-set antiparallel structure with four apoC-II units per rise of the β-sheet. This model is consistent with the mutational effects on rod-like apoC-II fibril formation. The lipid-dependent polymorphisms exhibited by apoC-II fibrils could determine the properties of apoC-II in renal amyloid deposits and their potential role in the development of cardiovascular disease.
  • Item
    Thumbnail Image
    Crystal structure of TcpK in complex with oriT DNA of the antibiotic resistance plasmid pCW3
    Traore, DAK ; Wisniewski, JA ; Flanigan, SF ; Conroy, PJ ; Panjikar, S ; Mok, Y-F ; Lao, C ; Griffin, MDW ; Adams, V ; Rood, JI ; Whisstock, JC (NATURE PUBLISHING GROUP, 2018-09-13)
    Conjugation is fundamental for the acquisition of new genetic traits and the development of antibiotic resistance in pathogenic organisms. Here, we show that a hypothetical Clostridium perfringens protein, TcpK, which is encoded by the tetracycline resistance plasmid pCW3, is essential for efficient conjugative DNA transfer. Our studies reveal that TcpK is a member of the winged helix-turn-helix (wHTH) transcription factor superfamily and that it forms a dimer in solution. Furthermore, TcpK specifically binds to a nine-nucleotide sequence that is present as tandem repeats within the pCW3 origin of transfer (oriT). The X-ray crystal structure of the TcpK-TcpK box complex reveals a binding mode centered on and around the β-wing, which is different from what has been previously shown for other wHTH proteins. Structure-guided mutagenesis experiments validate the specific interaction between TcpK and the DNA molecule. Additional studies highlight that the TcpK dimer is important for specific DNA binding.
  • Item
    No Preview Available
    A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation
    Zhao, H ; Ghirlando, R ; Alfonso, C ; Arisaka, F ; Attali, I ; Bain, DL ; Bakhtina, MM ; Becker, DF ; Bedwell, GJ ; Bekdemir, A ; Besong, TMD ; Birck, C ; Brautigam, CA ; Brennerman, W ; Byron, O ; Bzowska, A ; Chaires, JB ; Chaton, CT ; Coelfen, H ; Connaghan, KD ; Crowley, KA ; Curth, U ; Daviter, T ; Dean, WL ; Diez, AI ; Ebel, C ; Eckert, DM ; Eisele, LE ; Eisenstein, E ; England, P ; Escalante, C ; Fagan, JA ; Fairman, R ; Finn, RM ; Fischle, W ; Garcia de la Torre, J ; Gor, J ; Gustafsson, H ; Hall, D ; Harding, SE ; Hernandez Cifre, JG ; Herr, AB ; Howell, EE ; Isaac, RS ; Jao, S-C ; Jose, D ; Kim, S-J ; Kokona, B ; Kornblatt, JA ; Kosek, D ; Krayukhina, E ; Krzizike, D ; Kusznir, EA ; Kwon, H ; Larson, A ; Laue, TM ; Le Roy, A ; Leech, AP ; Lilie, H ; Luger, K ; Luque-Ortega, JR ; Ma, J ; May, CA ; Maynard, EL ; Modrak-Wojcik, A ; Mok, Y-F ; Muecke, N ; Nagel-Steger, L ; Narlikar, GJ ; Noda, M ; Nourse, A ; Obsil, T ; Park, CK ; Park, J-K ; Pawelek, PD ; Perdue, EE ; Perkins, SJ ; Perugini, MA ; Peterson, CL ; Peverelli, MG ; Piszczek, G ; Prag, G ; Prevelige, PE ; Raynal, BDE ; Rezabkova, L ; Richter, K ; Ringel, AE ; Rosenberg, R ; Rowe, AJ ; Rufer, AC ; Scott, DJ ; Seravalli, JG ; Solovyova, AS ; Song, R ; Staunton, D ; Stoddard, C ; Stott, K ; Strauss, HM ; Streicher, WW ; Sumida, JP ; Swygert, SG ; Szczepanowski, RH ; Tessmer, I ; Toth, RT ; Tripathy, A ; Uchiyama, S ; Uebel, SFW ; Unzai, S ; Gruber, AV ; von Hippel, PH ; Wandrey, C ; Wang, S-H ; Weitzel, SE ; Wielgus-Kutrowska, B ; Wolberger, C ; Wolff, M ; Wright, E ; Wu, Y-S ; Wubben, JM ; Schuck, P ; Langowski, J (PUBLIC LIBRARY SCIENCE, 2015-05-21)
    Analytical ultracentrifugation (AUC) is a first principles based method to determine absolute sedimentation coefficients and buoyant molar masses of macromolecules and their complexes, reporting on their size and shape in free solution. The purpose of this multi-laboratory study was to establish the precision and accuracy of basic data dimensions in AUC and validate previously proposed calibration techniques. Three kits of AUC cell assemblies containing radial and temperature calibration tools and a bovine serum albumin (BSA) reference sample were shared among 67 laboratories, generating 129 comprehensive data sets. These allowed for an assessment of many parameters of instrument performance, including accuracy of the reported scan time after the start of centrifugation, the accuracy of the temperature calibration, and the accuracy of the radial magnification. The range of sedimentation coefficients obtained for BSA monomer in different instruments and using different optical systems was from 3.655 S to 4.949 S, with a mean and standard deviation of (4.304 ± 0.188) S (4.4%). After the combined application of correction factors derived from the external calibration references for elapsed time, scan velocity, temperature, and radial magnification, the range of s-values was reduced 7-fold with a mean of 4.325 S and a 6-fold reduced standard deviation of ± 0.030 S (0.7%). In addition, the large data set provided an opportunity to determine the instrument-to-instrument variation of the absolute radial positions reported in the scan files, the precision of photometric or refractometric signal magnitudes, and the precision of the calculated apparent molar mass of BSA monomer and the fraction of BSA dimers. These results highlight the necessity and effectiveness of independent calibration of basic AUC data dimensions for reliable quantitative studies.
  • Item
    Thumbnail Image
    The ataxin-1 interactome reveals direct connection with multiple disrupted nuclear transport pathways
    Zhang, S ; Williamson, NA ; Duvick, L ; Lee, A ; Orr, HT ; Korlin-Downs, A ; Yang, P ; Mok, Y-F ; Jans, DA ; Bogoyevitch, MA (Nature Research, 2020-07-03)
    The expanded polyglutamine (polyQ) tract form of ataxin-1 drives disease progression in spinocerebellar ataxia type 1 (SCA1). Although known to form distinctive intranuclear bodies, the cellular pathways and processes that polyQ-ataxin-1 influences remain poorly understood. Here we identify the direct and proximal partners constituting the interactome of ataxin-1[85Q] in Neuro-2a cells, pathways analyses indicating a significant enrichment of essential nuclear transporters, pointing to disruptions in nuclear transport processes in the presence of elevated levels of ataxin-1. Our direct assessments of nuclear transporters and their cargoes confirm these observations, revealing disrupted trafficking often with relocalisation of transporters and/or cargoes to ataxin-1[85Q] nuclear bodies. Analogous changes in importin-β1, nucleoporin 98 and nucleoporin 62 nuclear rim staining are observed in Purkinje cells of ATXN1[82Q] mice. The results highlight a disruption of multiple essential nuclear protein trafficking pathways by polyQ-ataxin-1, a key contribution to furthering understanding of pathogenic mechanisms initiated by polyQ tract proteins.
  • Item
    No Preview Available
    Misfolded Polyglutamine, Polyalanine, and Superoxide Dismutase 1 Aggregate via Distinct Pathways in the Cell
    Polling, S ; Mok, Y-F ; Ramdzan, YM ; Turner, BJ ; Yerbury, JJ ; Hill, AF ; Hatters, DM (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2014-03-07)
    Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate self-aggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion subtypes, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis. Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis (PulSA) to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the nonaggregating forms, regardless of whether cells had inclusions or not, whereas 72Q was almost exclusively monomeric until inclusions formed. We propose that mutations leading to JUNQ inclusions induce a constitutively "misfolded" state exposing hydrophobic side chains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. Poly(Q) is not misfolded in this same sense due to universal polar side chains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.
  • Item
    No Preview Available
    Misfolded polyglutamine, polyalanine, and superoxide dismutase 1 aggregate via distinct pathways in the cell
    Polling, Saskia ; MOK, YEE-FOONG ; Ramdzan, Yasmin M. ; Turner, Bradley J. ; Yerbury, Justin J. ; Hill, Andrew F. ; Hatters, Danny M. (American Society for Biochemistry and Molecular Biology, 2014)
    Protein aggregation into intracellular inclusions is a key feature of many neurodegenerative disorders. A common theme has emerged that inappropriate selfaggregation of misfolded or mutant polypeptide sequences is detrimental to cell health. Yet protein quality control mechanisms may also deliberately cluster them together into distinct inclusion sub-types, including the insoluble protein deposit (IPOD) and the juxtanuclear quality control (JUNQ). Here we investigated how the intrinsic oligomeric state of three model systems of disease-relevant mutant protein and peptide sequences relates to the IPOD and JUNQ patterns of aggregation using sedimentation velocity analysis (SVA). Two of the models (polyalanine (37A) and superoxide dismutase 1 (SOD1) mutants A4V and G85R) accumulated into the same JUNQ-like inclusion whereas the other, polyglutamine (72Q), formed spatially distinct IPOD-like inclusions. Using flow cytometry pulse shape analysis to separate cells with inclusions from those without revealed the SOD1 mutants and 37A to have abruptly altered oligomeric states with respect to the non-aggregating forms, regardless of whether cells had inclusions or not; whereas 72Q was almost exclusively monomeric until inclusions formed. We propose mutations leading to JUNQ inclusions induce a constitutively "misfolded" state exposing hydrophobic sidechains that attract and ultimately overextend protein quality capacity, which leads to aggregation into JUNQ inclusions. PolyQ is not "misfolded" in this same sense due to universal polar sidechains, but is highly prone to forming amyloid fibrils that we propose invoke a different engagement mechanism with quality control.