Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1
    Howson, LJ ; Awad, W ; von Borstel, A ; Lim, HJ ; McWilliam, HEG ; Sandoval-Romero, ML ; Majumdar, S ; Hamzeh, AR ; Andrews, TD ; McDermott, DH ; Murphy, PM ; Le Nours, J ; Mak, JYW ; Liu, L ; Fairlie, DP ; McCluskey, J ; Villadangos, JA ; Cook, MC ; Turner, SJ ; Davey, MS ; Ojaimi, S ; Rossjohn, J (American Association for the Advancement of Science, 2020-07-10)
    The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets.
  • Item
    Thumbnail Image
    Endoplasmic reticulum chaperones stabilize ligand-receptive MR1 molecules for efficient presentation of metabolite antigens
    McWilliam, HEG ; Mak, JYW ; Awad, W ; Zorkau, M ; Cruz-Gomez, S ; Lim, HJ ; Yan, Y ; Wormald, S ; Dagley, LF ; Eckle, SBG ; Corbett, AJ ; Liu, H ; Li, S ; Reddiex, SJJ ; Mintern, JD ; Liu, L ; McCluskey, J ; Rossjohn, J ; Fairlie, DP ; Villadangos, JA (NATL ACAD SCIENCES, 2020-10-06)
    The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER.
  • Item
    Thumbnail Image
    Virus-Mediated Suppression of the Antigen Presentation Molecule MR1
    McSharry, BP ; Samer, C ; McWilliam, HEG ; Ashley, CL ; Yee, MB ; Steain, M ; Liu, L ; Fairlie, DP ; Kinchington, PR ; McCluskey, J ; Abendroth, A ; Villadangos, JA ; Rossjohn, J ; Slobedman, B (CELL PRESS, 2020-03-03)
    The antigen-presenting molecule MR1 presents microbial metabolites related to vitamin B2 biosynthesis to mucosal-associated invariant T cells (MAIT cells). Although bacteria and fungi drive the MR1 biosynthesis pathway, viruses have not previously been implicated in MR1 expression or its antigen presentation. We demonstrate that several herpesviruses inhibit MR1 cell surface upregulation, including a potent inhibition by herpes simplex virus type 1 (HSV-1). This virus profoundly suppresses MR1 cell surface expression and targets the molecule for proteasomal degradation, whereas ligand-induced cell surface expression of MR1 prior to infection enables MR1 to escape HSV-1-dependent targeting. HSV-1 downregulation of MR1 is dependent on de novo viral gene expression, and we identify the Us3 viral gene product as functioning to target MR1. Furthermore, HSV-1 downregulation of MR1 disrupts MAIT T cell receptor (TCR) activation. Accordingly, virus-mediated targeting of MR1 defines an immunomodulatory strategy that functionally disrupts the MR1-MAIT TCR axis.
  • Item
    Thumbnail Image
    Downregulation of MHC Class I Expression by Influenza A and B Viruses
    Koutsakos, M ; McWilliam, HEG ; Aktepe, TE ; Fritzlar, S ; Illing, PT ; Mifsud, NA ; Purcell, AW ; Rockman, S ; Reading, PC ; Vivian, JP ; Rossjohn, J ; Brooks, AG ; Mackenzie, JM ; Mintern, JD ; Villadangos, JA ; Nguyen, THO ; Kedzierska, K (FRONTIERS MEDIA SA, 2019-05-29)
    Manipulation of the MHC-I presentation pathway, and thus limiting MHC-I cell surface expression, is used by many viruses to evade immune recognition. In particular, downregulation of MHC-I molecules at the cell surface can reduce the ability of CD8+ T cells to recognize viral peptides presented by MHC-I molecules and thereby delay viral clearance by CD8+ T cells. To date, MHC-I downregulation by influenza viruses has not been reported. Given that influenza virus infections are a global health concern and that CD8+ T cells play an important role in promoting influenza virus clearance and recovery from influenza disease, we investigated whether influenza A and B viruses (IAV, IBV) downregulated MHC-I as a novel mechanism to evade cellular immunity. Here, we showed that infection of several cell types, including epithelial A549 cells, with a panel of IAV and IBV viruses downregulated the surface MHC-I expression on IAV/IBV-infected cells during the late stages of influenza virus infection in vitro. This observation was consistent across a panel of class I-reduced (C1R) cell lines expressing 14 different HLA-A or -B alleles and a panel of 721.221 cell lines expressing 11 HLA-C alleles. Interestingly, IBV infection caused more pronounced reduction in surface MHC-I expression compared to IAV. Importantly, the two viruses utilized two distinct mechanisms for MHC-I downregulation. Our data demonstrated that while IAV caused a global loss of MHC-I within influenza-infected cells, IBV infection resulted in the preferential loss of MHC-I molecules from the cell surface, consequent of delayed MHC-I trafficking to the cell surface, resulting from retaining MHC-I intracellularly during IBV infection. Overall, our study suggests that influenza viruses across both IAV and IBV subtypes have the potential to downregulate MHC-I surface expression levels. Our findings provide new insights into the host-pathogen interaction of influenza A and B viruses and inform the design of novel vaccine strategies against influenza viruses.
  • Item
    Thumbnail Image
    A molecular basis underpinning the T cell receptor heterogeneity of mucosal-associated invariant T cells
    Eckle, SBG ; Birkinshaw, RW ; Kostenko, L ; Corbett, AJ ; McWilliam, HEG ; Reantragoon, R ; Chen, Z ; Gherardin, NA ; Beddoe, T ; Liu, L ; Patel, O ; Meehan, B ; Fairlie, DP ; Villadangos, JA ; Godfrey, DI ; Kjer-Nielsen, L ; McCluskey, J ; Rossjohn, J (ROCKEFELLER UNIV PRESS, 2014-07-28)
    Mucosal-associated invariant T (MAIT) cells express an invariant T cell receptor (TCR) α-chain (TRAV1-2 joined to TRAJ33, TRAJ20, or TRAJ12 in humans), which pairs with an array of TCR β-chains. MAIT TCRs can bind folate- and riboflavin-based metabolites restricted by the major histocompatibility complex (MHC)-related class I-like molecule, MR1. However, the impact of MAIT TCR and MR1-ligand heterogeneity on MAIT cell biology is unclear. We show how a previously uncharacterized MR1 ligand, acetyl-6-formylpterin (Ac-6-FP), markedly stabilized MR1, potently up-regulated MR1 cell surface expression, and inhibited MAIT cell activation. These enhanced properties of Ac-6-FP were attributable to structural alterations in MR1 that subsequently affected MAIT TCR recognition via conformational changes within the complementarity-determining region (CDR) 3β loop. Analysis of seven TRBV6-1(+) MAIT TCRs demonstrated how CDR3β hypervariability impacted on MAIT TCR recognition by altering TCR flexibility and contacts with MR1 and the Ag itself. Ternary structures of TRBV6-1, TRBV6-4, and TRBV20(+) MAIT TCRs in complex with MR1 bound to a potent riboflavin-based antigen (Ag) showed how variations in TRBV gene usage exclusively impacted on MR1 contacts within a consensus MAIT TCR-MR1 footprint. Moreover, differential TRAJ gene usage was readily accommodated within a conserved MAIT TCR-MR1-Ag docking mode. Collectively, MAIT TCR heterogeneity can fine-tune MR1 recognition in an Ag-dependent manner, thereby modulating MAIT cell recognition.