Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    No Preview Available
    Varicella Zoster Virus Impairs Expression of the Nonclassical Major Histocompatibility Complex Class I-Related Gene Protein (MR1)
    Purohit, SK ; Samer, C ; McWilliam, HEG ; Traves, R ; Steain, M ; McSharry, BP ; Kinchington, PR ; Tscharke, DC ; Villadangos, JA ; Rossjohn, J ; Abendroth, A ; Slobedman, B (OXFORD UNIV PRESS INC, 2023-02-01)
    The antigen presentation molecule MR1 (major histocompatibility complex, class I-related) presents ligands derived from the riboflavin (vitamin B) synthesis pathway, which is not present in mammalian species or viruses, to mucosal-associated invariant T (MAIT) cells. In this study, we demonstrate that varicella zoster virus (VZV) profoundly suppresses MR1 expression. We show that VZV targets the intracellular reservoir of immature MR1 for degradation, while preexisting, ligand-bound cell surface MR1 is protected from such targeting, thereby highlighting an intricate temporal relationship between infection and ligand availability. We also identify VZV open reading frame (ORF) 66 as functioning to suppress MR1 expression when this viral protein is expressed during transient transfection, but this is not apparent during infection with a VZV mutant virus lacking ORF66 expression. This indicates that VZV is likely to encode multiple viral genes that target MR1. Overall, we identify an immunomodulatory function of VZV whereby infection suppresses the MR1 biosynthesis pathway.
  • Item
    Thumbnail Image
    Absence of mucosal-associated invariant T cells in a person with a homozygous point mutation in MR1
    Howson, LJ ; Awad, W ; von Borstel, A ; Lim, HJ ; McWilliam, HEG ; Sandoval-Romero, ML ; Majumdar, S ; Hamzeh, AR ; Andrews, TD ; McDermott, DH ; Murphy, PM ; Le Nours, J ; Mak, JYW ; Liu, L ; Fairlie, DP ; McCluskey, J ; Villadangos, JA ; Cook, MC ; Turner, SJ ; Davey, MS ; Ojaimi, S ; Rossjohn, J (American Association for the Advancement of Science, 2020-07-10)
    The role unconventional T cells play in protective immunity in humans is unclear. Mucosal-associated invariant T (MAIT) cells are an unconventional T cell subset restricted to the antigen-presenting molecule MR1. Here, we report the discovery of a patient homozygous for a rare Arg31His (R9H in the mature protein) mutation in MR1 who has a history of difficult-to-treat viral and bacterial infections. MR1R9H was unable to present the potent microbially derived MAIT cell stimulatory ligand. The MR1R9H crystal structure revealed that the stimulatory ligand cannot bind due to the mutation lying within, and causing structural perturbation to, the ligand-binding domain of MR1. While MR1R9H could bind and be up-regulated by a MAIT cell inhibitory ligand, the patient lacked circulating MAIT cells. This shows the importance of the stimulatory ligand for MAIT cell selection in humans. The patient had an expanded γδ T cell population, indicating a compensatory interplay between these unconventional T cell subsets.
  • Item
    Thumbnail Image
    Endoplasmic reticulum chaperones stabilize ligand-receptive MR1 molecules for efficient presentation of metabolite antigens
    McWilliam, HEG ; Mak, JYW ; Awad, W ; Zorkau, M ; Cruz-Gomez, S ; Lim, HJ ; Yan, Y ; Wormald, S ; Dagley, LF ; Eckle, SBG ; Corbett, AJ ; Liu, H ; Li, S ; Reddiex, SJJ ; Mintern, JD ; Liu, L ; McCluskey, J ; Rossjohn, J ; Fairlie, DP ; Villadangos, JA (NATL ACAD SCIENCES, 2020-10-06)
    The antigen-presenting molecule MR1 (MHC class I-related protein 1) presents metabolite antigens derived from microbial vitamin B2 synthesis to activate mucosal-associated invariant T (MAIT) cells. Key aspects of this evolutionarily conserved pathway remain uncharacterized, including where MR1 acquires ligands and what accessory proteins assist ligand binding. We answer these questions by using a fluorophore-labeled stable MR1 antigen analog, a conformation-specific MR1 mAb, proteomic analysis, and a genome-wide CRISPR/Cas9 library screen. We show that the endoplasmic reticulum (ER) contains a pool of two unliganded MR1 conformers stabilized via interactions with chaperones tapasin and tapasin-related protein. This pool is the primary source of MR1 molecules for the presentation of exogenous metabolite antigens to MAIT cells. Deletion of these chaperones reduces the ER-resident MR1 pool and hampers antigen presentation and MAIT cell activation. The MR1 antigen-presentation pathway thus co-opts ER chaperones to fulfill its unique ability to present exogenous metabolite antigens captured within the ER.
  • Item
    Thumbnail Image
    Allelic polymorphism in the T cell receptor and its impact on immune responses
    Gras, S ; Chen, Z ; Miles, JJ ; Liu, YC ; Bell, MJ ; Sullivan, LC ; Kjer-Nielsen, L ; Brennan, RM ; Burrows, JM ; Neller, MA ; Khanna, R ; Purcell, AW ; Brooks, AG ; McCluskey, J ; Rossjohn, J ; Burrows, SR (ROCKEFELLER UNIV PRESS, 2010-07-05)
    In comparison to human leukocyte antigen (HLA) polymorphism, the impact of allelic sequence variation within T cell receptor (TCR) loci is much less understood. Particular TCR loci have been associated with autoimmunity, but the molecular basis for this phenomenon is undefined. We examined the T cell response to an HLA-B*3501-restricted epitope (HPVGEADYFEY) from Epstein-Barr virus (EBV), which is frequently dominated by a TRBV9*01(+) public TCR (TK3). However, the common allelic variant TRBV9*02, which differs by a single amino acid near the CDR2beta loop (Gln55-->His55), was never used in this response. The structure of the TK3 TCR, its allelic variant, and a nonnaturally occurring mutant (Gln55-->Ala55) in complex with HLA-B*3501(HPVGEADYFEY) revealed that the Gln55-->His55 polymorphism affected the charge complementarity at the TCR-peptide-MHC interface, resulting in reduced functional recognition of the cognate and naturally occurring variants of this EBV peptide. Thus, polymorphism in the TCR loci may contribute toward variability in immune responses and the outcome of infection.
  • Item
    Thumbnail Image
    Protective Efficacy of Cross-Reactive CD8+ T Cells Recognising Mutant Viral Epitopes Depends on Peptide-MHC-I Structural Interactions and T Cell Activation Threshold
    Valkenburg, SA ; Gras, S ; Guillonneau, C ; La Gruta, NL ; Thomas, PG ; Purcell, AW ; Rossjohn, J ; Doherty, PC ; Turner, SJ ; Kedzierska, K ; Douek, DC (PUBLIC LIBRARY SCIENCE, 2010-08)
    Emergence of a new influenza strain leads to a rapid global spread of the virus due to minimal antibody immunity. Pre-existing CD8(+) T-cell immunity directed towards conserved internal viral regions can greatly ameliorate the disease. However, mutational escape within the T cell epitopes is a substantial issue for virus control and vaccine design. Although mutations can result in a loss of T cell recognition, some variants generate cross-reactive T cell responses. In this study, we used reverse genetics to modify the influenza NP(336-374) peptide at a partially-solvent exposed residue (N->A, NPN3A mutation) to assess the availability, effectiveness and mechanism underlying influenza-specific cross-reactive T cell responses. The engineered virus induced a diminished CD8(+) T cell response and selected a narrowed T cell receptor (TCR) repertoire within two V beta regions (V beta 8.3 and V beta 9). This can be partially explained by the H-2D(b)NPN3A structure that showed a loss of several contacts between the NPN3A peptide and H-2D(b), including a contact with His155, a position known to play an important role in mediating TCR-pMHC-I interactions. Despite these differences, common cross-reactive TCRs were detected in both the naïve and immune NPN3A-specific TCR repertoires. However, while the NPN3A epitope primes memory T-cells that give an equivalent recall response to the mutant or wild-type (wt) virus, both are markedly lower than wt->wt challenge. Such decreased CD8(+) responses elicited after heterologous challenge resulted in delayed viral clearance from the infected lung. Furthermore, mice first exposed to the wt virus give a poor, low avidity response following secondary infection with the mutant. Thus, the protective efficacy of cross-reactive CD8(+) T cells recognising mutant viral epitopes depend on peptide-MHC-I structural interactions and functional avidity. Our study does not support vaccine strategies that include immunization against commonly selected cross-reactive variants with mutations at partially-solvent exposed residues that have characteristics comparable to NPN3A.
  • Item
    Thumbnail Image
    Virus-Mediated Suppression of the Antigen Presentation Molecule MR1
    McSharry, BP ; Samer, C ; McWilliam, HEG ; Ashley, CL ; Yee, MB ; Steain, M ; Liu, L ; Fairlie, DP ; Kinchington, PR ; McCluskey, J ; Abendroth, A ; Villadangos, JA ; Rossjohn, J ; Slobedman, B (CELL PRESS, 2020-03-03)
    The antigen-presenting molecule MR1 presents microbial metabolites related to vitamin B2 biosynthesis to mucosal-associated invariant T cells (MAIT cells). Although bacteria and fungi drive the MR1 biosynthesis pathway, viruses have not previously been implicated in MR1 expression or its antigen presentation. We demonstrate that several herpesviruses inhibit MR1 cell surface upregulation, including a potent inhibition by herpes simplex virus type 1 (HSV-1). This virus profoundly suppresses MR1 cell surface expression and targets the molecule for proteasomal degradation, whereas ligand-induced cell surface expression of MR1 prior to infection enables MR1 to escape HSV-1-dependent targeting. HSV-1 downregulation of MR1 is dependent on de novo viral gene expression, and we identify the Us3 viral gene product as functioning to target MR1. Furthermore, HSV-1 downregulation of MR1 disrupts MAIT T cell receptor (TCR) activation. Accordingly, virus-mediated targeting of MR1 defines an immunomodulatory strategy that functionally disrupts the MR1-MAIT TCR axis.
  • Item
    Thumbnail Image
    Downregulation of MHC Class I Expression by Influenza A and B Viruses
    Koutsakos, M ; McWilliam, HEG ; Aktepe, TE ; Fritzlar, S ; Illing, PT ; Mifsud, NA ; Purcell, AW ; Rockman, S ; Reading, PC ; Vivian, JP ; Rossjohn, J ; Brooks, AG ; Mackenzie, JM ; Mintern, JD ; Villadangos, JA ; Nguyen, THO ; Kedzierska, K (FRONTIERS MEDIA SA, 2019-05-29)
    Manipulation of the MHC-I presentation pathway, and thus limiting MHC-I cell surface expression, is used by many viruses to evade immune recognition. In particular, downregulation of MHC-I molecules at the cell surface can reduce the ability of CD8+ T cells to recognize viral peptides presented by MHC-I molecules and thereby delay viral clearance by CD8+ T cells. To date, MHC-I downregulation by influenza viruses has not been reported. Given that influenza virus infections are a global health concern and that CD8+ T cells play an important role in promoting influenza virus clearance and recovery from influenza disease, we investigated whether influenza A and B viruses (IAV, IBV) downregulated MHC-I as a novel mechanism to evade cellular immunity. Here, we showed that infection of several cell types, including epithelial A549 cells, with a panel of IAV and IBV viruses downregulated the surface MHC-I expression on IAV/IBV-infected cells during the late stages of influenza virus infection in vitro. This observation was consistent across a panel of class I-reduced (C1R) cell lines expressing 14 different HLA-A or -B alleles and a panel of 721.221 cell lines expressing 11 HLA-C alleles. Interestingly, IBV infection caused more pronounced reduction in surface MHC-I expression compared to IAV. Importantly, the two viruses utilized two distinct mechanisms for MHC-I downregulation. Our data demonstrated that while IAV caused a global loss of MHC-I within influenza-infected cells, IBV infection resulted in the preferential loss of MHC-I molecules from the cell surface, consequent of delayed MHC-I trafficking to the cell surface, resulting from retaining MHC-I intracellularly during IBV infection. Overall, our study suggests that influenza viruses across both IAV and IBV subtypes have the potential to downregulate MHC-I surface expression levels. Our findings provide new insights into the host-pathogen interaction of influenza A and B viruses and inform the design of novel vaccine strategies against influenza viruses.
  • Item
    Thumbnail Image
    The oligomeric assembly of galectin-11 is critical for anti-parasitic activity in sheep (Ovis aries)
    Sakthivel, D ; Preston, S ; Gasser, RB ; da Costa, TPS ; Hernandez, JN ; Shahine, A ; Shakif-Azam, MD ; Lock, P ; Rossjohn, J ; Perugini, MA ; Francisco Gonzalez, J ; Meeusen, E ; Piedrafita, D ; Beddoe, T (NATURE PORTFOLIO, 2020-08-21)
    Galectins are a family of glycan-binding molecules with a characteristic affinity for ß-D-glycosides that mediate a variety of important cellular functions, including immune and inflammatory responses. Galectin-11 (LGALS-11) has been recently identified as a mediator induced specifically in animals against gastrointestinal nematodes and can interfere with parasite growth and development. Here, we report that at least two natural genetic variants of LGALS-11 exist in sheep, and demonstrate fundamental differences in anti-parasitic activity, correlated with their ability to dimerise. This study improves our understanding of the role of galectins in the host immune and inflammatory responses against parasitic nematodes and provides a basis for genetic studies toward selective breeding of animals for resistance to parasites.
  • Item
    Thumbnail Image
    Natural micropolymorphism in human leukocyte antigens provides a basis for genetic control of antigen recognition
    Archbold, JK ; Macdonald, WA ; Gras, S ; Ely, LK ; Miles, JJ ; Bell, MJ ; Brennan, RM ; Beddoe, T ; Wilce, MCJ ; Clements, CS ; Purcell, AW ; McCluskey, J ; Burrows, SR ; Rossjohn, J (ROCKEFELLER UNIV PRESS, 2009-01-16)
    Human leukocyte antigen (HLA) gene polymorphism plays a critical role in protective immunity, disease susceptibility, autoimmunity, and drug hypersensitivity, yet the basis of how HLA polymorphism influences T cell receptor (TCR) recognition is unclear. We examined how a natural micropolymorphism in HLA-B44, an important and large HLA allelic family, affected antigen recognition. T cell-mediated immunity to an Epstein-Barr virus determinant (EENLLDFVRF) is enhanced when HLA-B*4405 was the presenting allotype compared with HLA-B*4402 or HLA-B*4403, each of which differ by just one amino acid. The micropolymorphism in these HLA-B44 allotypes altered the mode of binding and dynamics of the bound viral epitope. The structure of the TCR-HLA-B*4405(EENLLDFVRF) complex revealed that peptide flexibility was a critical parameter in enabling preferential engagement with HLA-B*4405 in comparison to HLA-B*4402/03. Accordingly, major histocompatibility complex (MHC) polymorphism can alter the dynamics of the peptide-MHC landscape, resulting in fine-tuning of T cell responses between closely related allotypes.
  • Item
    Thumbnail Image
    Prevention of Cytotoxic T Cell Escape Using a Heteroclitic Subdominant Viral T Cell Determinant
    Butler, NS ; Theodossis, A ; Webb, AI ; Nastovska, R ; Ramarathinam, SH ; Dunstone, MA ; Rossjohn, J ; Purcell, AW ; Perlman, S ; Buchmeier, MJ (PUBLIC LIBRARY SCIENCE, 2008-10)
    High affinity antigen-specific T cells play a critical role during protective immune responses. Epitope enhancement can elicit more potent T cell responses and can subsequently lead to a stronger memory pool; however, the molecular basis of such enhancement is unclear. We used the consensus peptide-binding motif for the Major Histocompatibility Complex molecule H-2K(b) to design a heteroclitic version of the mouse hepatitis virus-specific subdominant S598 determinant. We demonstrate that a single amino acid substitution at a secondary anchor residue (Q to Y at position 3) increased the stability of the engineered determinant in complex with H-2K(b). The structural basis for this enhanced stability was associated with local alterations in the pMHC conformation as a result of the Q to Y substitution. Recombinant viruses encoding this engineered determinant primed CTL responses that also reacted to the wildtype epitope with significantly higher functional avidity, and protected against selection of virus mutated at a second CTL determinant and consequent disease progression in persistently infected mice. Collectively, our findings provide a basis for the enhanced immunogenicity of an engineered determinant that will serve as a template for guiding the development of heteroclitic T cell determinants with applications in prevention of CTL escape in chronic viral infections as well as in tumor immunity.