Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 56
  • Item
    No Preview Available
    The yeast inositol polyphosphate 5-phosphatases Inp52p and Inp53p translocate to actin patches following hyperosmotic stress: Mechanism for regulating phosphatidylinositol 4,5-bisphosphate at plasma membrane invaginations
    Ooms, LM ; McColl, BK ; Wiradjaja, F ; Wijayaratnam, APW ; Gleeson, P ; Gething, MJ ; Sambrook, J ; Mitchell, CA (AMER SOC MICROBIOLOGY, 2000-12)
    The Saccharomyces cerevisiae inositol polyphosphate 5-phosphatases (Inp51p, Inp52p, and Inp53p) each contain an N-terminal Sac1 domain, followed by a 5-phosphatase domain and a C-terminal proline-rich domain. Disruption of any two of these 5-phosphatases results in abnormal vacuolar and plasma membrane morphology. We have cloned and characterized the Sac1-containing 5-phosphatases Inp52p and Inp53p. Purified recombinant Inp52p lacking the Sac1 domain hydrolyzed phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and PtdIns(3, 5)P(2). Inp52p and Inp53p were expressed in yeast as N-terminal fusion proteins with green fluorescent protein (GFP). In resting cells recombinant GFP-tagged 5-phosphatases were expressed diffusely throughout the cell but were excluded from the nucleus. Following hyperosmotic stress the GFP-tagged 5-phosphatases rapidly and transiently associated with actin patches, independent of actin, in both the mother and daughter cells of budding yeast as demonstrated by colocalization with rhodamine phalloidin. Both the Sac1 domain and proline-rich domains were able to independently mediate translocation of Inp52p to actin patches, following hyperosmotic stress, while the Inp53p proline-rich domain alone was sufficient for stress-mediated localization. Overexpression of Inp52p or Inp53p, but not catalytically inactive Inp52p, which lacked PtdIns(4,5)P(2) 5-phosphatase activity, resulted in a dramatic reduction in the repolarization time of actin patches following hyperosmotic stress. We propose that the osmotic-stress-induced translocation of Inp52p and Inp53p results in the localized regulation of PtdIns(3,5)P(2) and PtdIns(4,5)P(2) at actin patches and associated plasma membrane invaginations. This may provide a mechanism for regulating actin polymerization and cell growth as an acute adaptive response to hyperosmotic stress.
  • Item
    No Preview Available
    The endosomal system of primary human vascular endothelial cells and albumin-FcRn trafficking
    Pannek, A ; Becker-Gotot, J ; Dower, SK ; Verhagen, AM ; Gleeson, PA (COMPANY BIOLOGISTS LTD, 2023-08)
    Human serum albumin (HSA) has a long circulatory half-life owing, in part, to interaction with the neonatal Fc receptor (FcRn or FCGRT) in acidic endosomes and recycling of internalised albumin. Vascular endothelial and innate immune cells are considered the most relevant cells for FcRn-mediated albumin homeostasis in vivo. However, little is known about endocytic trafficking of FcRn-albumin complexes in primary human endothelial cells. To investigate FcRn-albumin trafficking in physiologically relevant endothelial cells, we generated primary human vascular endothelial cell lines from blood endothelial precursors, known as blood outgrowth endothelial cells (BOECs). We mapped the endosomal system in BOECs and showed that BOECs efficiently internalise fluorescently labelled HSA predominantly by fluid-phase macropinocytosis. Pulse-chase studies revealed that intracellular HSA molecules co-localised with FcRn in acidic endosomal structures and that the wildtype HSA, but not the non-FcRn-binding HSAH464Q mutant, was excluded from late endosomes and/or lysosomes. Live imaging revealed that HSA is partitioned into FcRn-positive tubules derived from maturing macropinosomes, which are then transported towards the plasma membrane. These findings identify the FcRn-albumin trafficking pathway in primary vascular endothelial cells, relevant to albumin homeostasis.
  • Item
    No Preview Available
    Long-term live cell imaging during differentiation of human iPSC-derived neurons
    Wang, J ; Gleeson, PA ; Fourriere, L (ELSEVIER, 2023-12-15)
    Live-cell imaging is crucial to appreciate the dynamics and the complexity of cellular interaction processes. However, live-cell imaging of human neurons is challenging due to neuronal sensitivity. Here, we describe a long-term live-cell imaging protocol for neurons derived from human induced pluripotent stem cells. By using an IncuCyte live-cell imaging system, we have obtained information on neuronal dynamics during the different stages of neurogenesis. The protocol has also been developed to monitor the dynamics of the neuronal intracellular organelles. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
  • Item
    No Preview Available
    Organelle mapping in dendrites of human iPSC-derived neurons reveals dynamic functional dendritic Golgi structures
    Wang, J ; Daniszewski, M ; Hao, MM ; Hernandez, D ; Pebay, A ; Gleeson, PA ; Fourriere, L (CELL PRESS, 2023-07-25)
    Secretory pathways within dendrites of neurons have been proposed for local transport of newly synthesized proteins. However, little is known about the dynamics of the local secretory system and whether the organelles are transient or stable structures. Here, we quantify the spatial and dynamic behavior of dendritic Golgi and endosomes during differentiation of human neurons generated from induced pluripotent stem cells (iPSCs). In early neuronal development, before and during migration, the entire Golgi apparatus transiently translocates from the soma into dendrites. In mature neurons, dynamic Golgi elements, containing cis and trans cisternae, are transported from the soma along dendrites, in an actin-dependent process. Dendritic Golgi outposts are dynamic and display bidirectional movement. Similar structures were observed in cerebral organoids. Using the retention using selective hooks (RUSH) system, Golgi resident proteins are transported efficiently into Golgi outposts from the endoplasmic reticulum. This study reveals dynamic, functional Golgi structures in dendrites and a spatial map for investigating dendrite trafficking in human neurons.
  • Item
  • Item
    No Preview Available
    Arf5-mediated regulation of mTORC1 at the plasma membrane.
    Makhoul, C ; Houghton, FJ ; Hinde, E ; Gleeson, PA ; Trejo, J (American Society for Cell Biology (ASCB), 2023-04-01)
    The mechanistic target of rapamycin (mTOR) kinase regulates a major signaling pathway in eukaryotic cells. In addition to regulation of mTORC1 at lysosomes, mTORC1 is also localized at other locations. However, little is known about the recruitment and activation of mTORC1 at nonlysosomal sites. To identify regulators of mTORC1 recruitment to nonlysosomal compartments, novel interacting partners with the mTORC1 subunit, Raptor, were identified using immunoprecipitation and mass spectrometry. We show that one of the interacting partners, Arf5, is a novel regulator of mTORC1 signaling at plasma membrane ruffles. Arf5-GFP localizes with endogenous mTOR at PI3,4P2-enriched membrane ruffles together with the GTPase required for mTORC1 activation, Rheb. Knockdown of Arf5 reduced the recruitment of mTOR to membrane ruffles. The activation of mTORC1 at membrane ruffles was directly demonstrated using a plasma membrane-targeted mTORC1 biosensor, and Arf5 was shown to enhance the phosphorylation of the mTORC1 biosensor substrate. In addition, endogenous Arf5 was shown to be required for rapid activation of mTORC1-mediated S6 phosphorylation following nutrient starvation and refeeding. Our findings reveal a novel Arf5-dependent pathway for recruitment and activation of mTORC1 at plasma membrane ruffles, a process relevant for spatial and temporal regulation of mTORC1 by receptor and nutrient stimuli.
  • Item
    No Preview Available
    Quantification of Golgi Entry and Exit Kinetics of Protein Cargoes.
    Wang, J ; Cho, EH-J ; Gleeson, PA ; Fourriere, L (Springer US, 2023)
    The Golgi apparatus is a pivotal secretory organelle in membrane trafficking, a hub responsible for posttranslational modifications, sorting, and trafficking of newly synthetized proteins received from the endoplasmic reticulum (ER). Different protein cargoes have been shown to travel through the Golgi stacks with different kinetics. Dysregulated transport and altered residency time of cargoes in the Golgi can impair their functionality. To study the anterograde trafficking of specific protein cargoes, innovative molecular methods have been developed to synchronize the traffic of selected cargoes from the ER in live cells. These methods of synchronization now provide the ability to quantify the Golgi entry and exit kinetics of defined cargo. In this chapter, we describe a quantitative, accurate, and semiautomated protocol to image and quantify the anterograde trafficking of individual cargo traversing the Golgi. This protocol, using free software, is compatible with different synchronization techniques, and can be used for a range of applications, such as comparing the Golgi kinetics of (1) different cargoes, (2) wild-type cargo vs mutated cargo, (3) the same cargo under different Golgi conditions, and (4) cargoes in drug screening platforms. The method can also be applied to study the localization and transit of a cargo through different organelles other than the Golgi apparatus.
  • Item
    Thumbnail Image
    The trans-Golgi network is a major site for α-secretase processing of amyloid precursor protein in primary neurons
    Tan, JZA ; Gleeson, PA (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2019-02-01)
    Amyloid precursor protein (APP) is processed along the amyloidogenic pathway by the β-secretase, BACE1, generating β-amyloid (Aβ), or along the nonamyloidogenic pathway by α-secretase, precluding Aβ production. The plasma membrane is considered the major site for α-secretase-mediated APP cleavage, but other cellular locations have not been rigorously investigated. Here, we report that APP is processed by endogenous α-secretase at the trans-Golgi network (TGN) of both transfected HeLa cells and mouse primary neurons. We have previously shown the adaptor protein complex, AP-4, and small G protein ADP-ribosylation factor-like GTPase 5b (Arl5b) are required for efficient post-Golgi transport of APP to endosomes. We found here that AP-4 or Arl5b depletion results in Golgi accumulation of APP and increased secretion of the soluble α-secretase cleavage product sAPPα. Moreover, inhibition of γ-secretase following APP accumulation in the TGN increases the levels of the membrane-bound C-terminal fragments of APP from both α-secretase cleavage (α-CTF, named C83 according to its band size) and BACE1 cleavage (β-CTF/C99). The level of C83 was ∼4 times higher than that of C99, indicating that α-secretase processing is the major pathway and that BACE1 processing is the minor pathway in the TGN. AP-4 silencing in mouse primary neurons also resulted in the accumulation of endogenous APP in the TGN and enhanced α-secretase processing. These findings identify the TGN as a major site for α-secretase processing in HeLa cells and primary neurons and indicate that both APP processing pathways can occur within the TGN compartment along the secretory pathway.
  • Item
    Thumbnail Image
    Immune tolerance against infused FVIII in hemophilia A is mediated by PD-L1+ Tregs
    Becker-Gotot, J ; Meissner, M ; Kotov, V ; Jurado-Mestre, B ; Maione, A ; Pannek, A ; Albert, T ; Flores, C ; Schildberg, FA ; Gleeson, PA ; Reipert, BM ; Oldenburg, J ; Kurts, C (AMER SOC CLINICAL INVESTIGATION INC, 2022-11-15)
    A major complication of hemophilia A therapy is the development of alloantibodies (inhibitors) that neutralize intravenously administered coagulation factor VIII (FVIII). Immune tolerance induction therapy (ITI) by repetitive FVIII injection can eradicate inhibitors, and thereby reduce morbidity and treatment costs. However, ITI success is difficult to predict and the underlying immunological mechanisms are unknown. Here, we demonstrated that immune tolerance against FVIII under nonhemophilic conditions was maintained by programmed death (PD) ligand 1-expressing (PD-L1-expressing) regulatory T cells (Tregs) that ligated PD-1 on FVIII-specific B cells, causing them to undergo apoptosis. FVIII-deficient mice injected with FVIII lacked such Tregs and developed inhibitors. Using an ITI mouse model, we found that repetitive FVIII injection induced FVIII-specific PD-L1+ Tregs and reengaged removal of inhibitor-forming B cells. We also demonstrated the existence of FVIII-specific Tregs in humans and showed that such Tregs upregulated PD-L1 in patients with hemophilia after successful ITI. Simultaneously, FVIII-specific B cells upregulated PD-1 and became killable by Tregs. In summary, we showed that PD-1-mediated B cell tolerance against FVIII operated in healthy individuals and in patients with hemophilia A without inhibitors, and that ITI reengaged this mechanism. These findings may impact monitoring of ITI success and treatment of patients with hemophilia A.
  • Item
    Thumbnail Image
    Interacting partners of Golgi-localized small G protein Arl5b identified by a combination of in vivo proximity labelling and GFP-Trap pull down
    Houghton, FJ ; Makhoul, C ; Cho, EH-J ; Williamson, NA ; Gleeson, PA (WILEY, 2022-09)
    The small G protein Arl5b is localised on the trans-Golgi network (TGN) and regulates endosomes-to-TGN transport. Here, we combined in vivo and in vitro techniques to map the interactive partners and near neighbours of Arl5b at the TGN, using constitutively active, membrane-bound Arl5b(Q70L)-GFP in stably expressing HeLa cells, and the proximity labelling techniques BioID and APEX2 in parallel with GFP-Trap pull down. From MS analysis, 22 Golgi proteins were identified; 50% were TGN-localised Rabs, Arfs and Arls. The scaffold/tethering factors ACBD3 (GCP60) and PIST (GOPC) were also identified, and we show that Arl5b is required for TGN recruitment of ACBD3. Overall, the combination of in vivo labelling and direct pull downs indicates a highly organised complex of small G proteins on TGN membranes.