Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 6 of 6
  • Item
    Thumbnail Image
    A Family of Dual-Activity Glycosyltransferase-Phosphorylases Mediates Mannogen Turnover and Virulence in Leishmania Parasites
    Sernee, MF ; Ralton, JE ; Nero, TL ; Sobala, LF ; Kloehn, J ; Vieira-Lara, MA ; Cobbold, SA ; Stanton, L ; Pires, DEV ; Hanssen, E ; Males, A ; Ward, T ; Bastidas, LM ; van der Peet, PL ; Parker, MW ; Ascher, DB ; Williams, SJ ; Davies, GJ ; McConville, MJ (CELL PRESS, 2019-09-11)
    Parasitic protists belonging to the genus Leishmania synthesize the non-canonical carbohydrate reserve, mannogen, which is composed of β-1,2-mannan oligosaccharides. Here, we identify a class of dual-activity mannosyltransferase/phosphorylases (MTPs) that catalyze both the sugar nucleotide-dependent biosynthesis and phosphorolytic turnover of mannogen. Structural and phylogenic analysis shows that while the MTPs are structurally related to bacterial mannan phosphorylases, they constitute a distinct family of glycosyltransferases (GT108) that have likely been acquired by horizontal gene transfer from gram-positive bacteria. The seven MTPs catalyze the constitutive synthesis and turnover of mannogen. This metabolic rheostat protects obligate intracellular parasite stages from nutrient excess, and is essential for thermotolerance and parasite infectivity in the mammalian host. Our results suggest that the acquisition and expansion of the MTP family in Leishmania increased the metabolic flexibility of these protists and contributed to their capacity to colonize new host niches.
  • Item
    Thumbnail Image
    Discovery of Inhibitors of Leishmania β-1,2-Mannosyltransferases Using a Click-Chemistry-Derived Guanosine Monophosphate Library
    van der Peet, P ; Ralton, JE ; McConville, MJ ; Williams, SJ ; Croft, AK (PUBLIC LIBRARY SCIENCE, 2012-02-29)
    Leishmania spp. are a medically important group of protozoan parasites that synthesize a novel intracellular carbohydrate reserve polymer termed mannogen. Mannogen is a soluble homopolymer of β-1,2-linked mannose residues that accumulates in the major pathogenic stages in the sandfly vector and mammalian host. While several steps in mannogen biosynthesis have been defined, none of the enzymes have been isolated or characterized. We report the development of a simple assay for the GDP-mannose-dependent β-1,2-mannosyltransferases involved in mannogen synthesis. This assay utilizes octyl α-D-mannopyranoside to prime the formation of short mannogen oligomers up to 5 mannose residues. This assay was used to screen a focussed library of 44 GMP-triazole adducts for inhibitors. Several compounds provided effective inhibition of mannogen β-1,2-mannosyltransferases in a cell-free membrane preparation. This assay and inhibitor compounds will be useful for dissecting the role of different mannosyltransferases in regulating de novo biosynthesis and elongation reactions in mannogen metabolism.
  • Item
    Thumbnail Image
    Golgi-Located NTPDase1 of Leishmania major Is Required for Lipophosphoglycan Elongation and Normal Lesion Development whereas Secreted NTPDase2 Is Dispensable for Virulence
    Sansom, FM ; Ralton, JE ; Sernee, MF ; Cohen, AM ; Hooker, DJ ; Hartland, EL ; Naderer, T ; McConville, MJ ; Vasconcelos, E (PUBLIC LIBRARY SCIENCE, 2014-12)
    Parasitic protozoa, such as Leishmania species, are thought to express a number of surface and secreted nucleoside triphosphate diphosphohydrolases (NTPDases) which hydrolyze a broad range of nucleoside tri- and diphosphates. However, the functional significance of NTPDases in parasite virulence is poorly defined. The Leishmania major genome was found to contain two putative NTPDases, termed LmNTPDase1 and 2, with predicted NTPDase catalytic domains and either an N-terminal signal sequence and/or transmembrane domain, respectively. Expression of both proteins as C-terminal GFP fusion proteins revealed that LmNTPDase1 was exclusively targeted to the Golgi apparatus, while LmNTPDase2 was predominantly secreted. An L. major LmNTPDase1 null mutant displayed increased sensitivity to serum complement lysis and exhibited a lag in lesion development when infections in susceptible BALB/c mice were initiated with promastigotes, but not with the obligate intracellular amastigote stage. This phenotype is characteristic of L. major strains lacking lipophosphoglycan (LPG), the major surface glycoconjugate of promastigote stages. Biochemical studies showed that the L. major NTPDase1 null mutant synthesized normal levels of LPG that was structurally identical to wild type LPG, with the exception of having shorter phosphoglycan chains. These data suggest that the Golgi-localized NTPase1 is involved in regulating the normal sugar-nucleotide dependent elongation of LPG and assembly of protective surface glycocalyx. In contrast, deletion of the gene encoding LmNTPDase2 had no measurable impact on parasite virulence in BALB/c mice. These data suggest that the Leishmania major NTPDase enzymes have potentially important roles in the insect stage, but only play a transient or non-major role in pathogenesis in the mammalian host.
  • Item
    Thumbnail Image
    Leishmania major Methionine Sulfoxide Reductase A Is Required for Resistance to Oxidative Stress and Efficient Replication in Macrophages
    Sansom, FM ; Tang, L ; Ralton, JE ; Saunders, EC ; Naderer, T ; McConville, MJ ; Kelly, BL (PUBLIC LIBRARY SCIENCE, 2013-02-20)
    Leishmania are protozoan parasites that proliferate within the phagolysome of mammalian macrophages. While a number of anti-oxidant systems in these parasites have been shown to protect against endogenous as well as host-generated reactive oxygen species, the potential role of enzymes involved in the repair of oxidatively damaged proteins remains uncharacterized. The Leishmania spp genomes encode a single putative methionine sulfoxide reductase (MsrA) that could have a role in reducing oxidized free and proteinogenic methionine residues. A GFP-fusion of L. major MsrA was shown to have a cytoplasmic localization by immunofluorescence microscopy and subcellular fractionation. An L. major msrA null mutant, generated by targeted replacement of both chromosomal allelles, was viable in rich medium but was unable to reduce exogenous methionine sulfoxide when cultivated in the presence of this amino acid, indicating that msrA encodes a functional MsrA. The ΔmsrA mutant exhibited increased sensitivity to H(2)O(2) compared to wild type parasites and was unable to proliferate normally in macrophages. Wild type sensitivity to H(2)O(2) and infectivity in macrophages was restored by complementation of the mutant with a plasmid encoding MsrA. Unexpectedly, the ΔmsrA mutant was able to induce normal lesions in susceptible BALB/c indicating that this protein is not essential for pathogenesis in vivo. Our results suggest that Leishmania MsrA contributes to the anti-oxidative defences of these parasites, but that complementary oxidative defence mechansims are up-regulated in lesion amastigotes.
  • Item
    Thumbnail Image
    Evidence that intracellular β1-2 mannan is a virulence factor in Leishmania parasites
    Ralton, JE ; Naderer, T ; Piraino, HL ; Bashtannyk, TA ; Callaghan, JM ; McConville, MJ (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2003-10-17)
    The protozoan parasite Leishmania mexicana proliferates within macrophage phagolysosomes in the mammalian host. In this study we provide evidence that a novel class of intracellular beta1-2 mannan oligosaccharides is important for parasite survival in host macrophages. Mannan (degree of polymerization 4-40) is expressed at low levels in non-pathogenic promastigote stages but constitutes 80 and 90% of the cellular carbohydrate in the two developmental stages that infect macrophages, non-dividing promastigotes, and lesion-derived amastigotes, respectively. Mannan is catabolized when parasites are starved of glucose, suggesting a reserve function, and developmental stages having low mannan levels or L. mexicana GDPMP mutants lacking all mannose molecules are highly sensitive to glucose starvation. Environmental stresses, such as mild heat shock or the heat shock protein-90 inhibitor, geldanamycin, that trigger the differentiation of promastigotes to amastigotes, result in a 10-25-fold increase in mannan levels. Developmental stages with low mannan levels or L. mexicana mutants lacking mannan do not survive heat shock and are unable to differentiate to amastigotes or infect macrophages in vitro. In contrast, a L. mexicana mutant deficient only in components of the mannose-rich surface glycocalyx differentiates normally and infects macrophages in vitro. Collectively, these data provide strong evidence that mannan accumulation is important for parasite differentiation and survival in macrophages.
  • Item
    Thumbnail Image
    Intracellular trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins and free GPIs in Leishmania mexicana
    Ralton, JE ; Mullin, KA ; McConville, MJ (PORTLAND PRESS, 2002-04-15)
    Free glycosylphosphatidylinositols (GPIs) are an important class of membrane lipids in many pathogenic protozoa. In this study, we have investigated the subcellular distribution and intracellular trafficking of an abundant class of free GPIs [termed glycosylinositolphospholipids (GIPLs)] in Leishmania mexicana promastigotes. The intracellular transport of the GIPLs and the major GPI-anchored glycoprotein gp63 was measured by following the incorporation of these molecules into sphingolipid-rich, detergent-resistant membranes (DRMs) in the plasma membrane. In metabolic-labelling experiments, mature GIPLs and gp63 were transported to DRMs in the plasma membrane with a t(1/2) of 70 and 40 min, respectively. Probably, GIPL transport to the DRMs involves a vesicular mechanism, as transport of both the GIPLs and gp63 was inhibited similarly at 10 degrees C. All GIPL intermediates were quantitatively recovered in Triton X-100-soluble membranes and were largely orientated on the cytoplasmic face of the endoplasmic reticulum, as shown by their sensitivity to exogenous phosphatidylinositol-specific phospho-lipase C. On the contrary, a significant proportion of the mature GIPLs ( approximately 50% of iM4) were accessible to membrane-impermeable probes on the surface of live promastigotes. These results suggest that the GIPLs are flipped across intracellular or plasma membranes during surface transport and that a significant fraction may populate the cytoplasmic leaflet of the plasma membrane. Finally, treatment of L. mexicana promastigotes with myriocin, an inhibitor of sphingolipid biosynthesis, demonstrated that ongoing sphingolipid biosynthesis is not required for the plasma-membrane transport of either gp63 or the GIPLs and that DRMs persist even when cellular levels of the major sphingolipid are depleted by 70%.