Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 750
  • Item
    No Preview Available
    Interplay of intracellular and trans-cellular DNA methylation in natural archaeal consortia
    Reva, ON ; La Cono, V ; Crisafi, F ; Smedile, F ; Mudaliyar, M ; Ghosal, D ; Giuliano, L ; Krupovic, M ; Yakimov, MM (WILEY, 2024-04)
    DNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp. SVX81, and an ectosymbiotic Candidatus Nanohalococcus occultus SVXNc, a nano-sized archaeon from the DPANN superphylum. We utilized PacBio SMRT and Illumina cDNA sequencing to analyse samples from consortia of different compositions for methylomics and transcriptomics. Endogenous cTAG methylation, typical of Haloferax, was accompanied in this strain by methylation at four other motifs, including GDGcHC methylation, which is specific to the ectosymbiont. Our analysis of the distribution of methylated and unmethylated motifs suggests that autochthonous cTAG methylation may influence gene regulation. The frequency of GRAGAaG methylation increased in highly expressed genes, while CcTTG and GTCGaGG methylation could be linked to restriction-modification (RM) activity. Generally, the RM activity might have been reduced during the evolution of this archaeon to balance the protection of cells from intruders, the reduction of DNA damage due to self-restriction in stressful environments, and the benefits of DNA exchange under extreme conditions. Our methylomics, transcriptomics and complementary electron cryotomography (cryo-ET) data suggest that the nanohaloarchaeon exports its methyltransferase to methylate the Haloferax genome, unveiling a new aspect of the interaction between the symbiont and its host.
  • Item
    No Preview Available
    SLAM-ITseq identifies that Nrf2 induces liver regeneration through the pentose phosphate pathway.
    Tan, VWT ; Salmi, TM ; Karamalakis, AP ; Gillespie, A ; Ong, AJS ; Balic, JJ ; Chan, Y-C ; Bladen, CE ; Brown, KK ; Dawson, MA ; Cox, AG (Elsevier BV, 2024-04-08)
    The liver exhibits a remarkable capacity to regenerate following injury. Despite this unique attribute, toxic injury is a leading cause of liver failure. The temporal processes by which the liver senses injury and initiates regeneration remain unclear. Here, we developed a transgenic zebrafish model wherein hepatocyte-specific expression of uracil phosphoribosyltransferase (UPRT) enabled the implementation of SLAM-ITseq to investigate the nascent transcriptome during initiation of liver injury and regeneration. Using this approach, we identified a rapid metabolic transition from the fed to the fasted state that was followed by induction of the nuclear erythroid 2-related factor (Nrf2) antioxidant program. We find that activation of Nrf2 in hepatocytes is required to induce the pentose phosphate pathway (PPP) and improve survival following liver injury. Mechanistically, we demonstrate that inhibition of the PPP disrupts nucleotide biosynthesis to prevent liver regeneration. Together, these studies provide fundamental insights into the mechanism by which early metabolic adaptation to injury facilitates tissue regeneration.
  • Item
    No Preview Available
    High-level nitrofurantoin resistance in a clinical isolate of Klebsiella pneumoniae: a comparative genomics and metabolomics analysis
    Hussein, M ; Sun, Z ; Hawkey, J ; Allobawi, R ; Judd, LM ; Carbone, V ; Sharma, R ; Thombare, V ; Baker, M ; Rao, GG ; Li, J ; Holt, KE ; Velkov, T ; Tokajian, S (AMER SOC MICROBIOLOGY, 2024-01-23)
    Nitrofurantoin is a commonly used chemotherapeutic agent in the treatment of uncomplicated urinary tract infections caused by the problematic multidrug resistant Gram-negative pathogen Klebsiella pneumoniae. The present study aims to elucidate the mechanism of nitrofurantoin action and high-level resistance in K. pneumoniae using whole-genome sequencing (WGS), qPCR analysis, mutation structural modeling and untargeted metabolomic analysis. WGS profiling of evolved highly resistant mutants (nitrofurantoin minimum inhibitory concentrations > 256 mg/L) revealed modified expression of several genes related to membrane transport (porin ompK36 and efflux pump regulator oqxR) and nitroreductase activity (ribC and nfsB, involved in nitrofurantoin reduction). Untargeted metabolomics analysis of total metabolites extracted at 1 and 4 h post-nitrofurantoin treatment revealed that exposure to the drug caused a delayed effect on the metabolome which was most pronounced after 4 h. Pathway enrichment analysis illustrated that several complex interrelated metabolic pathways related to nitrofurantoin bacterial killing (aminoacyl-tRNA biosynthesis, purine metabolism, central carbohydrate metabolism, and pantothenate and CoA biosynthesis) and the development of nitrofurantoin resistance (riboflavin metabolism) were significantly perturbed. This study highlights for the first time the key role of efflux pump regulator oqxR in nitrofurantoin resistance and reveals global metabolome perturbations in response to nitrofurantoin, in K. pneumoniae.IMPORTANCEA quest for novel antibiotics and revitalizing older ones (such as nitrofurantoin) for treatment of difficult-to-treat Gram-negative bacterial infections has become increasingly popular. The precise antibacterial activity of nitrofurantoin is still not fully understood. Furthermore, although the prevalence of nitrofurantoin resistance remains low currently, the drug's fast-growing consumption worldwide highlights the need to comprehend the emerging resistance mechanisms. Here, we used multidisciplinary techniques to discern the exact mechanism of nitrofurantoin action and high-level resistance in Klebsiella pneumoniae, a common cause of urinary tract infections for which nitrofurantoin is the recommended treatment. We found that the expression of multiple genes related to membrane transport (including active efflux and passive diffusion of drug molecules) and nitroreductase activity was modified in nitrofurantoin-resistant strains, including oqxR, the transcriptional regulator of the oqxAB efflux pump. Furthermore, complex interconnected metabolic pathways that potentially govern the nitrofurantoin-killing mechanisms (e.g., aminoacyl-tRNA biosynthesis) and nitrofurantoin resistance (riboflavin metabolism) were significantly inhibited following nitrofurantoin treatment. Our study could help inform the improvement of nitrofuran derivatives, the development of new pharmacophores, or drug combinations to support the resurgence of nitrofurantoin in the management of multidrug resistant K. pneumouniae infection.
  • Item
    Thumbnail Image
    FRET-enhanced photoluminescence of perylene diimides by combining molecular aggregation and insulation
    Zhang, B ; Lyskov, I ; Wilson, LJ ; Sabatini, RP ; Manian, A ; Soleimaninejad, H ; White, JM ; Smith, TA ; Lakhwani, G ; Jones, DJ ; Ghiggino, KP ; Russo, SP ; Wong, WWH (Royal Society of Chemistry, 2020-07-14)
    The photoluminescence quantum yield (ϕPL) of perylene diimide derivatives (PDIs) is often limited by aggregation caused quenching (ACQ) at high concentration or in the neat solid-state. Energy transfer in high dye concentration systems is also a key factor in determining ϕPL as a result of energy funneling to trap sites in the sample. By tuning the substituents, we present two classes of PDIs with aggregation and insulation of the PDI core. By combining these fluorophores in a polymer film, we demonstrate highly emissive samples (85% ϕPL) at high concentration (140 mM or 20% w/w). Experimental and theoretical studies provide insight into why such a combination is necessary to achieve high ϕPL. While insulated fluorophores maintain respectable ϕPL at high concentration, an improved ϕPL can be achieved in the presence of appropriately oriented fluorophore aggregates as emissive traps. The theoretical calculations show that the relative orientation of aggregated monomers can result in energetic separation of localized states from the charge-transfer and bi-excitonic states thereby enabling high ϕPL.
  • Item
    Thumbnail Image
    The 8-hydroxyquinoline derivative, clioquinol, is an alpha-1 adrenoceptor antagonist
    Betrie, AH ; Abdul-Ridha, A ; Hartono, H ; Chalmers, DK ; Wright, CE ; Scott, DJ ; Angus, JA ; Ayton, S (PERGAMON-ELSEVIER SCIENCE LTD, 2024-04)
    Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) is an antimicrobial agent whose actions as a zinc or copper ionophore and an iron chelator revived the interest in similar compounds for the treatment of fungal and bacterial infections, neurodegeneration and cancer. Recently, we reported zinc ionophores, including clioquinol, cause vasorelaxation in isolated arteries through mechanisms that involve sensory nerves, endothelium and vascular smooth muscle. Here, we report that clioquinol also uniquely acts as a competitive alpha-1 (α1) adrenoceptor antagonist. We employed ex vivo functional vascular contraction and pharmacological techniques in rat isolated mesenteric arteries, receptor binding assays using stabilized solubilized α1 receptor variants, or wild-type human α1-adrenoceptors transfected in COS-7 cells (African green monkey kidney fibroblast-like cells), and molecular dynamics homology modelling based on the recently published α1A adrenoceptor cryo-EM and α1B crystal structures. At higher concentrations, all ionophores including clioquinol cause a non-competitive antagonism of agonist-mediated contraction due to intracellular zinc delivery, as reported previously. However, at lower concentration ranges, clioquinol has an additional mechanism of competitively inhibiting α1-adrenoceptors that contributes to decreasing vascular contractility. Molecular dynamic simulation showed that clioquinol binds stably to the orthosteric binding site (Asp106) of the receptor, confirming the structural basis for competitive α1-adrenoceptor antagonism by clioquinol.
  • Item
    Thumbnail Image
    Unravelling the mechanism of neurotensin recognition by neurotensin receptor 1
    Asadollahi, K ; Rajput, S ; de Zhang, LA ; Ang, C-S ; Nie, S ; Williamson, NA ; Griffin, MDW ; Bathgate, RAD ; Scott, DJ ; Weikl, TR ; Jameson, GNL ; Gooley, PR (NATURE PORTFOLIO, 2023-12-09)
    The conformational ensembles of G protein-coupled receptors (GPCRs) include inactive and active states. Spectroscopy techniques, including NMR, show that agonists, antagonists and other ligands shift the ensemble toward specific states depending on the pharmacological efficacy of the ligand. How receptors recognize ligands and the kinetic mechanism underlying this population shift is poorly understood. Here, we investigate the kinetic mechanism of neurotensin recognition by neurotensin receptor 1 (NTS1) using 19F-NMR, hydrogen-deuterium exchange mass spectrometry and stopped-flow fluorescence spectroscopy. Our results indicate slow-exchanging conformational heterogeneity on the extracellular surface of ligand-bound NTS1. Numerical analysis of the kinetic data of neurotensin binding to NTS1 shows that ligand recognition follows an induced-fit mechanism, in which conformational changes occur after neurotensin binding. This approach is applicable to other GPCRs to provide insight into the kinetic regulation of ligand recognition by GPCRs.
  • Item
    Thumbnail Image
    Structures of the interleukin 11 signalling complex reveal gp130 dynamics and the inhibitory mechanism of a cytokine variant
    Metcalfe, RD ; Hanssen, E ; Fung, KY ; Aizel, K ; Kosasih, CC ; Zlatic, CO ; Doughty, L ; Morton, CJ ; Leis, AP ; Parker, MW ; Gooley, PR ; Putoczki, TL ; Griffin, MDW (NATURE PORTFOLIO, 2023-11-20)
    Interleukin (IL-)11, an IL-6 family cytokine, has pivotal roles in autoimmune diseases, fibrotic complications, and solid cancers. Despite intense therapeutic targeting efforts, structural understanding of IL-11 signalling and mechanistic insights into current inhibitors are lacking. Here we present cryo-EM and crystal structures of the human IL-11 signalling complex, including the complex containing the complete extracellular domains of the shared IL-6 family β-receptor, gp130. We show that complex formation requires conformational reorganisation of IL-11 and that the membrane-proximal domains of gp130 are dynamic. We demonstrate that the cytokine mutant, IL-11 Mutein, competitively inhibits signalling in human cell lines. Structural shifts in IL-11 Mutein underlie inhibition by altering cytokine binding interactions at all three receptor-engaging sites and abrogating the final gp130 binding step. Our results reveal the structural basis of IL-11 signalling, define the molecular mechanisms of an inhibitor, and advance understanding of gp130-containing receptor complexes, with potential applications in therapeutic development.
  • Item
    Thumbnail Image
    In vivo assembly of epitope-coated biopolymer particles that induce anti-tumor responses
    Jenika, D ; Pounraj, S ; Wibowo, D ; Flaxl, LM ; Rehm, BHA ; Mintern, JD (NATURE PORTFOLIO, 2024-01-23)
    There is an unmet need for antigen delivery systems that elicit efficient T cell priming to prevent infectious diseases or for treatment of cancers. Here, we explored the immunogenic potential of biologically assembled biopolymer particles (BPs) that have been bioengineered to display the antigenic MHC I and MHC II epitopes of model antigen ovalbumin (OVA). Purified dendritic cells (DCs) captured BP-OVA and presented the associated antigenic epitopes to CD4+ T cells and CD8+ T cells. Vaccination with BP-OVA in the absence of adjuvant elicited antigen presentation to OVA-specific CD8+ and CD4+ T cells and cross-primed effective cytotoxic T lymphocyte (CTL) killers. BP-OVA induction of CTL killing did not require CD4+ T cell help, with active CTLs generated in BP-OVA vaccinated I-Ab-/- and CD40-/- mice. In contrast, IL-15 and type I IFN were required, with abrogated CTL activity in vaccinated IL-15-/- and IFNAR1-/- mice. cDC1 and/or CD103+ DCs were not essential for BP-OVA specific CTL with immunization eliciting responses in Batf3-/- mice. Poly I:C, but not LPS or CpG, co-administered as an adjuvant with BP-OVA boosted CTL responses. Finally, vaccination with BP-OVA protected against B16-OVA melanoma and Eμ-myc-GFP-OVA lymphoma inoculation. In summary, we have demonstrated that epitope-displaying BPs represent an antigen delivery platform exhibiting a unique mechanism to effectively engage T cell immune responses.
  • Item
    Thumbnail Image
    Systemic inflammatory response syndrome triggered by blood-borne pathogens induces prolonged dendritic cell paralysis and immunosuppression
    Ashayeripanah, M ; Vega-Ramos, J ; Fernandez-Ruiz, D ; Valikhani, S ; Lun, ATL ; White, JT ; Young, LJ ; Yaftiyan, A ; Zhan, Y ; Wakim, L ; Caminschi, I ; Lahoud, MH ; Lew, AM ; Shortman, K ; Smyth, GK ; Heath, WR ; Mintern, JD ; Roquilly, A ; Villadangos, JA (CELL PRESS, 2024-02-27)
    Blood-borne pathogens can cause systemic inflammatory response syndrome (SIRS) followed by protracted, potentially lethal immunosuppression. The mechanisms responsible for impaired immunity post-SIRS remain unclear. We show that SIRS triggered by pathogen mimics or malaria infection leads to functional paralysis of conventional dendritic cells (cDCs). Paralysis affects several generations of cDCs and impairs immunity for 3-4 weeks. Paralyzed cDCs display distinct transcriptomic and phenotypic signatures and show impaired capacity to capture and present antigens in vivo. They also display altered cytokine production patterns upon stimulation. The paralysis program is not initiated in the bone marrow but during final cDC differentiation in peripheral tissues under the influence of local secondary signals that persist after resolution of SIRS. Vaccination with monoclonal antibodies that target cDC receptors or blockade of transforming growth factor β partially overcomes paralysis and immunosuppression. This work provides insights into the mechanisms of paralysis and describes strategies to restore immunocompetence post-SIRS.
  • Item
    Thumbnail Image
    Ion Mobility-Based Enrichment-Free N-Terminomics Analysis Reveals Novel Legumain Substrates in Murine Spleen.
    Ziegler, AR ; Dufour, A ; Scott, NE ; Edgington-Mitchell, LE (Elsevier BV, 2024-02)
    Aberrant levels of the asparaginyl endopeptidase legumain have been linked to inflammation, neurodegeneration, and cancer, yet our understanding of this protease is incomplete. Systematic attempts to identify legumain substrates have been previously confined to in vitro studies, which fail to mirror physiological conditions and obscure biologically relevant cleavage events. Using high-field asymmetric waveform ion mobility spectrometry (FAIMS), we developed a streamlined approach for proteome and N-terminome analyses without the need for N-termini enrichment. Compared to unfractionated proteomic analysis, we demonstrate FAIMS fractionation improves N-termini identification by >2.5 fold, resulting in the identification of >2882 unique N-termini from limited sample amounts. In murine spleens, this approach identifies 6366 proteins and 2528 unique N-termini, with 235 cleavage events enriched in WT compared to legumain-deficient spleens. Among these, 119 neo-N-termini arose from asparaginyl endopeptidase activities, representing novel putative physiological legumain substrates. The direct cleavage of selected substrates by legumain was confirmed using in vitro assays, providing support for the existence of physiologically relevant extra-lysosomal legumain activity. Combined, these data shed critical light on the functions of legumain and demonstrate the utility of FAIMS as an accessible method to improve depth and quality of N-terminomics studies.