Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 7 of 7
  • Item
    No Preview Available
    Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice
    Du, XJ ; Cole, TJ ; Tenis, N ; Gao, XM ; Köntgen, F ; Kemp, BE ; Heierhorst, J (AMER SOC MICROBIOLOGY, 2002-04)
    Ca(2+) signaling plays a central role in cardiac contractility and adaptation to increased hemodynamic demand. We have generated mice with a targeted deletion of the S100A1 gene coding for the major cardiac isoform of the large multigenic S100 family of EF hand Ca(2+)-binding proteins. S100A1(-/-) mice have normal cardiac function under baseline conditions but have significantly reduced contraction rate and relaxation rate responses to beta-adrenergic stimulation that are associated with a reduced Ca(2+) sensitivity. In S100A1(-/-) mice, basal left-ventricular contractility deteriorated following 3-week pressure overload by thoracic aorta constriction despite a normal adaptive hypertrophy. Surprisingly, heterozygotes also had an impaired response to acute beta-adrenergic stimulation but maintained normal contractility in response to chronic pressure overload that coincided with S100A1 upregulation to wild-type levels. In contrast to other genetic models with impaired cardiac contractility, loss of S100A1 did not lead to cardiac hypertrophy or dilation in aged mice. The data demonstrate that high S100A1 protein levels are essential for the cardiac reserve and adaptation to acute and chronic hemodynamic stress in vivo.
  • Item
    Thumbnail Image
    Invariant chain controls the activity of extracellular cathepsin L
    Fiebiger, E ; Maehr, R ; Villadangos, J ; Weber, E ; Erickson, A ; Bikoff, E ; Ploegh, HL ; Lennon-Duménil, AM (ROCKEFELLER UNIV PRESS, 2002-11-04)
    Secretion of proteases is critical for degradation of the extracellular matrix during an inflammatory response. Cathepsin (Cat) S and L are the major elastinolytic cysteine proteases in mouse macrophages. A 65 amino acid segment of the p41 splice variant (p41(65aa)) of major histocompatibility complex class II-associated invariant chain (Ii) binds to the active site of CatL and permits the maintenance of a pool of mature enzyme in endosomal compartments of macro-phages and dendritic cells (DCs). Here we show that interaction of p41(65aa) with mature CatL allows extracellular accumulation of the active enzyme. We detected mature CatL as a complex with p41(65aa) in culture supernatants from antigen-presenting cells (APCs). Extracellular accumulation of mature CatL is up-regulated by inflammatory stimuli as observed in interferon (IFN)-gamma-treated macrophages and lipopolysaccharide (LPS)-activated DCs. Despite the neutral pH of the extracellular milieu, released CatL associated with p41(65aa) is catalytically active as demonstrated by active site labeling and elastin degradation assays. We propose that p41(65aa) stabilizes CatL in the extracellular environment and induces a local increase in the concentration of matrix-degrading enzymes during inflammation. Through its interaction with CatL, Ii may therefore control the migratory response of APCs and/or the recruitment of effectors of the inflammatory response.
  • Item
    No Preview Available
    Purification and characterization of relaxin from the tammar wallaby (Macropus eugenii):: Bioactivity and expression in the corpus luteum
    Bathgate, RAD ; Siebel, AL ; Tovote, P ; Claasz, A ; Macris, M ; Tregear, GW ; Parry, LJ (SOC STUDY REPRODUCTION, 2002-07)
    The objective of this study was to isolate and purify prorelaxin or mature relaxin from the tammar wallaby corpus luteum (CL), determine their structure and bioactivity, and test the hypothesis that enzymatic cleavage of prorelaxin occurs in late gestation. Tammar relaxin peptides were extracted from pooled corpora lutea of late pregnant tammars using a combination of HPLC methods, and they were identified using Western blotting with a human (H2) relaxin antisera and matrix-assisted laser desorption ionization time of flight mass spectrometry. Although no prorelaxin was identified, multiple 6-kDa peptides were detected, which corresponded to the predicted mature tammar relaxin amino acid sequence, with an A chain of 24 amino acids, and different B chain lengths of 28, 29, 30, and 32 amino acids. Tammar relaxin bound with high affinity to rat cortical relaxin receptors and stimulated cAMP production in the human monocytic cell line, THP-1, which expresses the relaxin receptor. Analysis of individual CL indicated that equivalent amounts of mature relaxin peptides were present throughout gestation and also in unmated tammars at equivalent stages of the luteal phase in the nonpregnant cycle. Immunoreactive relaxin was localized specifically to the luteal cells of the CL and the intensity of immunostaining did not vary between gestational stages. These data show that the CL of both pregnant and unmated tammar wallabies produces mature relaxin and suggests that relaxin expression in this species is not influenced by the conceptus. Moreover, the presence of mature relaxin throughout gestation implies that prohormone cleavage is not limited to the later stages of pregnancy
  • Item
    No Preview Available
    Up-regulation of mesotocin receptors in the tammar wallaby myometrium is pregnancy-specific and independent of estrogen
    Siebel, AL ; Gehring, HM ; Nave, CD ; Bathgate, RAD ; Borchers, CE ; Parry, LJ (OXFORD UNIV PRESS INC, 2002-05)
    The oxytocin-like peptide of most Australian marsupials is mesotocin, which stimulates uterine contractions and is important for normal birth in the tammar wallaby. Female marsupials have two uteri and, in monovular species such as the tammar, one uterus is gravid with a single fetus, whereas the contralateral uterus is nongravid. A significant increase in myometrial mesotocin receptor concentrations occurs only in the gravid uterus on Day 23 of the 26-day gestation. This study examined whether or not mesotocin receptors are present in the myometrium and are up-regulated at the equivalent stage of the luteal phase in unmated tammars. In contrast to the marked increase in mesotocin receptor mRNA and protein concentrations in the myometrium of the gravid uterus during pregnancy, receptors did not increase in the unmated animals. There were also no significant differences between the two uteri, except on Day 27. Plasma profiles of peripheral estradiol-17beta and progesterone did not differ significantly between pregnant and nonpregnant cycles. However, progesterone concentrations were significantly lower on Day 1 postpartum compared with Day 27 of the nonpregnant cycle. In pregnant tammars, the molar ratio of circulating estradiol-17beta to progesterone increased significantly between Day 25 of gestation and 1 day postpartum, but was not correlated with an increase in mesotocin receptor concentrations in either uterus. The data confirm that a local fetal influence is more important than systemic factors, such as estrogen, in the regulation of uterine mesotocin receptors in the tammar wallaby.
  • Item
    Thumbnail Image
    Characterization of a Leishmania mexicana mutant defective in synthesis of free and protein-linked GPI glycolipids
    Naderer, T ; McConville, MJ (ELSEVIER, 2002)
    The cell surface of the promastigote stage of the protozoan parasite, Leishmania mexicana is coated by a number of glycosylphosphatidylinositol (GPI)-anchored proteins, a GPI-anchored lipophosphoglycan (LPG) and an abundant class of free GPIs, termed glycoinositolphospholipids (GIPLs). We have developed a new screen for isolating L. mexicana mutants that are defective in GPI biosynthesis, involving concanavalin A selection of a parental strain with a modified surface coat. One mutant was isolated that lacked the major GIPL species and mature GPI-protein anchor precursors, but synthesized normal levels of LPG anchor precursors. Based on analysis of apolar GIPLs that accumulate in this mutant and in vivo and in vitro synthesized GPIs, this mutant was found to have a defect in the addition of an alpha1-6 linked mannose to the common precursor, Man(1)GlcN-PI. The apolar GIPLs were transported to the cell surface with the same kinetics as mature GIPLs. However, non-anchored isoforms of the major GPI-anchored protein, gp63, were either slowly secreted (with a t(1/2) of 2 h) or retained within the endoplasmic reticulum, respectively. These findings suggest that common enzymes are involved in the synthesis of GIPLs and protein anchors and have implications for understanding how the biosynthesis of the major surface components of these parasites is regulated.
  • Item
    Thumbnail Image
    Intracellular trafficking of glycosylphosphatidylinositol (GPI)-anchored proteins and free GPIs in Leishmania mexicana
    Ralton, JE ; Mullin, KA ; McConville, MJ (PORTLAND PRESS, 2002-04-15)
    Free glycosylphosphatidylinositols (GPIs) are an important class of membrane lipids in many pathogenic protozoa. In this study, we have investigated the subcellular distribution and intracellular trafficking of an abundant class of free GPIs [termed glycosylinositolphospholipids (GIPLs)] in Leishmania mexicana promastigotes. The intracellular transport of the GIPLs and the major GPI-anchored glycoprotein gp63 was measured by following the incorporation of these molecules into sphingolipid-rich, detergent-resistant membranes (DRMs) in the plasma membrane. In metabolic-labelling experiments, mature GIPLs and gp63 were transported to DRMs in the plasma membrane with a t(1/2) of 70 and 40 min, respectively. Probably, GIPL transport to the DRMs involves a vesicular mechanism, as transport of both the GIPLs and gp63 was inhibited similarly at 10 degrees C. All GIPL intermediates were quantitatively recovered in Triton X-100-soluble membranes and were largely orientated on the cytoplasmic face of the endoplasmic reticulum, as shown by their sensitivity to exogenous phosphatidylinositol-specific phospho-lipase C. On the contrary, a significant proportion of the mature GIPLs ( approximately 50% of iM4) were accessible to membrane-impermeable probes on the surface of live promastigotes. These results suggest that the GIPLs are flipped across intracellular or plasma membranes during surface transport and that a significant fraction may populate the cytoplasmic leaflet of the plasma membrane. Finally, treatment of L. mexicana promastigotes with myriocin, an inhibitor of sphingolipid biosynthesis, demonstrated that ongoing sphingolipid biosynthesis is not required for the plasma-membrane transport of either gp63 or the GIPLs and that DRMs persist even when cellular levels of the major sphingolipid are depleted by 70%.
  • Item
    Thumbnail Image
    Glucocorticoid receptor deficient thymic and peripheral T cells develop normally in adult mice
    Purton, JF ; Zhan, YF ; Liddicoat, DR ; Hardy, CL ; Lew, AM ; Cole, TJ ; Godfrey, DI (WILEY-V C H VERLAG GMBH, 2002-12)
    The involvement of glucocorticoid receptor (GR) signaling in T cell development is highly controversial, with several studies for and against. We have previously demonstrated that GR(-/-) mice, which usually die at birth because of impaired lung development, exhibit normal T cell development, at least in embryonic mice and in fetal thymus organ cultures. To directly investigate the role of GR signaling in adult T cell development, we analyzed the few GR(-/-) mice that occasionally survive birth, and irradiated mice reconstituted with GR(-/-) fetal liver precursors. All thymic and peripheral T cells, as well as other leukocyte lineages, developed and were maintained at normal levels. Anti-CD3-induced cell death of thymocytes in vitro, T cell repertoire heterogeneity and T cell proliferation in response to anti-CD3 stimulation were normal in the absence of GR signaling. Finally, we show that metyrapone, an inhibitor of glucocorticoid synthesis (commonly used to demonstrate a role for glucocorticoids in T cell development), impaired thymocyte development regardless of GR genotype indicating that this reagent inhibits thymocyte development in a glucocorticoid-independent fashion. These data demonstrate that GR signaling is not required for either normal T cell development or peripheral maintenance in embryonic or adult mice.