Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 11
  • Item
    Thumbnail Image
    Conservation of a Glycine-rich Region in the Prion Protein Is Required for Uptake of Prion Infectivity
    Harrison, CF ; Lawson, VA ; Coleman, BM ; Kim, Y-S ; Masters, CL ; Cappai, R ; Barnham, KJ ; Hill, AF (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2010-06-25)
    Prion diseases are associated with the misfolding of the endogenously expressed prion protein (designated PrP(C)) into an abnormal isoform (PrP(Sc)) that has infectious properties. The hydrophobic domain of PrP(C) is highly conserved and contains a series of glycine residues that show perfect conservation among all species, strongly suggesting it has functional and evolutionary significance. These glycine residues appear to form repeats of the GXXXG protein-protein interaction motif (two glycines separated by any three residues); the retention of these residues is significant and presumably relates to the functionality of PrP(C). Mutagenesis studies demonstrate that minor alterations to this highly conserved region of PrP(C) drastically affect the ability of cells to uptake and replicate prion infection in both cell and animal bioassay. The localization and processing of mutant PrP(C) are not affected, although in vitro and in vivo studies demonstrate that this region is not essential for interaction with PrP(Sc), suggesting these residues provide conformational flexibility. These data suggest that this region of PrP(C) is critical in the misfolding process and could serve as a novel, species-independent target for prion disease therapeutics.
  • Item
    Thumbnail Image
    Amyloid precursor protein and amyloid precursor-like protein 2 have distinct roles in modulating myelination, demyelination, and remyelination of axons
    Truong, PH ; Ciccotosto, GD ; Merson, TD ; Spoerri, L ; Chuei, MJ ; Ayers, M ; Xing, YL ; Emery, B ; Cappai, R (WILEY, 2019-03)
    The identification of factors that regulate myelination provides important insight into the molecular mechanisms that coordinate nervous system development and myelin regeneration after injury. In this study, we investigated the role of amyloid precursor protein (APP) and its paralogue amyloid precursor-like protein 2 (APLP2) in myelination using APP and APLP2 knockout (KO) mice. Given that BACE1 regulates myelination and myelin sheath thickness in both the peripheral and central nervous systems, we sought to determine if APP and APLP2, as alternate BACE1 substrates, also modulate myelination, and therefore provide a better understanding of the events regulating axonal myelination. In the peripheral nervous system, we identified that adult, but not juvenile KO mice, have lower densities of myelinated axons in their sciatic nerves while in the central nervous system, axons within both the optic nerves and corpus callosum of both KO mice were significantly hypomyelinated compared to wild-type (WT) controls. Biochemical analysis demonstrated significant increases in BACE1 and myelin oligodendrocyte glycoprotein and decreased NRG1 and proteolipid protein levels in both KO brain tissue. The acute cuprizone model of demyelination/remyelination revealed that whereas axons in the corpus callosum of WT and APLP2-KO mice underwent similar degrees of demyelination and subsequent remyelination, the myelinated callosal axons in APP-KO mice were less susceptible to cuprizone-induced demyelination and showed a failure in remyelination after cuprizone withdrawal. These data identified APP and APLP2 as modulators of normal myelination and demyelination/remyelination conditions. Deletion of APP and APLP2 identifies novel interplays between the BACE1 substrates in the regulation of myelination.
  • Item
    Thumbnail Image
    The amyloid precursor protein derivative, APP96-110, is efficacious following intravenous administration after traumatic brain injury
    Plummer, SL ; Corrigan, F ; Thornton, E ; Woenig, JA ; Vink, R ; Cappai, R ; Van Den Heuvel, C ; Kobeissy, FH (PUBLIC LIBRARY SCIENCE, 2018-01-10)
    Following traumatic brain injury (TBI) neurological damage is ongoing through a complex cascade of primary and secondary injury events in the ensuing minutes, days and weeks. The delayed nature of secondary injury provides a valuable window of opportunity to limit the consequences with a timely treatment. Recently, the amyloid precursor protein (APP) and its derivative APP96-110 have shown encouraging neuroprotective activity following TBI following an intracerebroventricular administration. Nevertheless, its broader clinical utility would be enhanced by an intravenous (IV) administration. This study assessed the efficacy of IV APP96-110, where a dose-response for a single dose of 0.005mg/kg- 0.5mg/kg APP96-110 at either 30 minutes or 5 hours following moderate-severe diffuse impact-acceleration injury was performed. Male Sprague-Dawley rats were assessed daily for 3 or 7 days on the rotarod to examine motor outcome, with a separate cohort of animals utilised for immunohistochemistry analysis 3 days post-TBI to assess axonal injury and neuroinflammation. Animals treated with 0.05mg/kg or 0.5mg/kg APP96-110 after 30 minutes demonstrated significant improvements in motor outcome. This was accompanied by a reduction in axonal injury and neuroinflammation in the corpus callosum at 3 days post-TBI, whereas 0.005mg/kg had no effect. In contrast, treatment with 0.005m/kg or 0.5mg/kg APP96-110 at 5 hours post-TBI demonstrated significant improvements in motor outcome over 3 days, which was accompanied by a reduction in axonal injury in the corpus callosum. This demonstrates that APP96-110 remains efficacious for up to 5 hours post-TBI when administered IV, and supports its development as a novel therapeutic compound following TBI.
  • Item
    No Preview Available
    An update on the toxicity of Abeta in Alzheimer's disease.
    Götz, J ; Ittner, LM ; Schonrock, N ; Cappai, R (Informa UK Limited, 2008-12)
    Alzheimer's disease is characterized histopathologically by deposition of insoluble forms of the peptide Abeta and the protein tau in brain. Abeta is the principal component of amyloid plaques and tau of neurofibrillary tangles. Familial cases of AD are associated with causal mutations in the gene encoding the amyloid precursor protein, APP, from which the amyloidogenic Abeta peptide is derived, and this supports a role for Abeta in disease. Abeta can promote tau pathology and at the same time its toxicity is also tau-dependent. Abeta can adopt different conformations including soluble oligomers and insoluble fibrillar species present in plaques. We discuss which of these conformations exert toxicity, highlight molecular pathways involved and discuss what has been learned by applying functional genomics.
  • Item
    No Preview Available
    Copper binding to the Alzheimer's disease amyloid precursor protein
    Kong, GK-W ; Miles, LA ; Crespi, GAN ; Morton, CJ ; Ng, HL ; Barnham, KJ ; McKinstry, WJ ; Cappai, R ; Parker, MW (SPRINGER, 2008-03)
    Alzheimer's disease is the fourth biggest killer in developed countries. Amyloid precursor protein (APP) plays a central role in the development of the disease, through the generation of a peptide called A beta by proteolysis of the precursor protein. APP can function as a metalloprotein and modulate copper transport via its extracellular copper binding domain (CuBD). Copper binding to this domain has been shown to reduce A beta levels and hence a molecular understanding of the interaction between metal and protein could lead to the development of novel therapeutics to treat the disease. We have recently determined the three-dimensional structures of apo and copper bound forms of CuBD. The structures provide a mechanism by which CuBD could readily transfer copper ions to other proteins. Importantly, the lack of significant conformational changes to CuBD on copper binding suggests a model in which copper binding affects the dimerisation state of APP leading to reduction in A beta production. We thus predict that disruption of APP dimers may be a novel therapeutic approach to treat Alzheimer's disease.
  • Item
    Thumbnail Image
    Conformational Behavior and Aggregation of Ataxin-3 in SDS
    Saunders, HM ; Hughes, VA ; Cappai, R ; Bottomley, SP ; Pastore, A (PUBLIC LIBRARY SCIENCE, 2013-07-22)
    Spinocerebellar ataxia type 3 (SCA3) is one of nine polyglutamine (polyQ) diseases all characterized by the presence of intraneuronal inclusions that contain aggregated protein. Aggregation of ataxin-3, the causative protein of SCA3, has been well characterized in vitro, with both pathogenic and non-pathogenic length ataxin-3 undergoing fibrillogenesis. However, only ataxin-3 containing an expanded polyQ tract leads to SCA3. Therefore other cellular factors, not present in previous in vitro studies, may modulate aggregation during disease. The interactions between fibrillar species and cell membranes have been characterized in a number of amyloid diseases, including Huntington's Disease, and these interactions affect aggregation and toxicity. We have characterized the effects of the membrane mimetic sodium dodecyl sulfate (SDS) on ataxin-3 structure and aggregation, to show that both micellar and non-micellar SDS have differing effects on the two stages of ataxin-3 aggregation. We also demonstrate that fibrillar ataxin-3 binds phospholipids, in particular phosphorylated phosphotidylinositols. These results highlight the effect of intracellular factors on the ataxin-3 misfolding landscape and their implications in SCA3 and polyQ diseases in general are discussed.
  • Item
    Thumbnail Image
    The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease
    Hung, LW ; Villemagne, VL ; Cheng, L ; Sherratt, NA ; Ayton, S ; White, AR ; Crouch, PJ ; Lim, S ; Leong, SL ; Wilkins, S ; George, J ; Roberts, BR ; Pham, CLL ; Liu, X ; Chiu, FCK ; Shackleford, DM ; Powell, AK ; Masters, CL ; Bush, AI ; O'Keefe, G ; Culvenor, JG ; Cappai, R ; Cherny, RA ; Donnelly, PS ; Hill, AF ; Finkelstein, DI ; Barnham, KJ (ROCKEFELLER UNIV PRESS, 2012-04-09)
    Parkinson's disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified Cu(II)(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that Cu(II)(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD.
  • Item
    Thumbnail Image
    Alpha-synuclein oligomers and fibrils originate in two distinct conformer pools: a small angle X-ray scattering and ensemble optimisation modelling study
    Curtain, CC ; Kirby, NM ; Mertens, HDT ; Barnham, KJ ; Knott, RB ; Masters, CL ; Cappai, R ; Rekas, A ; Kenche, VB ; Ryan, T (ROYAL SOC CHEMISTRY, 2015-01)
    The 140 residue intrinsically disordered protein α-synuclein (α-syn) self-associates to form fibrils that are the major constituent of the Lewy body intracellular protein inclusions, and neurotoxic oligomers. Both of these macromolecular structures are associated with a number of neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Using ensemble optimisation modelling (EOM) and small angle X-ray scattering (SAXS) on a size-exclusion column equipped beamline, we studied how the distribution of structural conformers in α-syn may be influenced by the presence of the familial early-onset mutations A30P, E45K and A53T, by substituting the four methionine residues with alanines and by reaction with copper (Cu2+) or an anti-fibril organic platinum (Pt) complex. We found that the WT had two major conformer groups, representing ensembles of compact and extended structures. The population of the extended group was increased in the more rapidly fibril-forming E45K and A53T mutants, while the compact group was enlarged in the oligomer-forming A30P mutant. Addition of Cu2+ resulted in the formation of an ensemble of compact conformers, while the anti-fibril agent and alanine substitution substantially reduced the population of extended conformers. Since our observations with the mutants suggest that fibrils may be drawn from the extended conformer ensemble, we propose that the compact and extended ensembles represent the beginning of oligomer and fibril formation pathways respectively, both of which have been reported to lead to a toxic gain of function. Manipulating these pathways and monitoring the results by EOM and SAXS may be useful in the development of anti-Parkinson's disease therapies.
  • Item
    Thumbnail Image
    Small angle X-ray scattering analysis of Cu2+-induced oligomers of the Alzheimer's amyloid β peptide
    Ryan, TM ; Kirby, N ; Mertens, HDT ; Roberts, B ; Barnham, KJ ; Cappai, R ; Pham, CLL ; Masters, CL ; Curtain, CC (ROYAL SOC CHEMISTRY, 2015)
    Research into causes of Alzheimer's disease and its treatment has produced a tantalising array of hypotheses about the role of transition metal dyshomeostasis, many of them on the interaction of these metals with the neurotoxic amyloid-β peptide (Aβ). Here, we have used small angle X-ray scattering (SAXS) to study the effect of the molar ratio, Cu(2+)/Aβ, on the early three-dimensional structures of the Aβ1-40 and Cu(2+)/Aβ1-42 peptides in solution. We found that at molar ratios of 0.5 copper to peptide Aβ1-40 aggregated, while Aβ1-42 adopted a relatively monodisperse cylindrical shape, and at a ratio of 1.5 copper to peptide Aβ1-40 adopted a monodisperse cylindrical shape, while Aβ1-42 adopted the shape of an ellipsoid of rotation. We also found, via in-line rapid mixing SAXS analysis, that both peptides in the absence of copper were monodisperse at very short timeframes (<2 s). Kratky plots of these scattering profiles indicated that immediately after mixing both were intrinsically disordered. Ensemble optimisation modelling reflected this, indicating a wide range of structural conformers. These data reflect the ensembles from which the Cu(2+)-promoted oligomers were derived. Our results are discussed in the light of other studies that have shown that the Cu(2+)/Aβ has a marked effect on fibril and oligomer formation by this peptide, with a higher ratio favouring the formation of cytotoxic non-amyloid oligomers. Our results are relatively consistent with previous two-dimensional studies of the conformations of these Cu(2+)-induced entities, made on a much longer time-scale than SAXS, by transmission electron microscopy and atomic force microscopy, which showed that a range of oligomeric species are formed. We propose that SAXS carried out on a modern synchrotron beamline enables studies on initial events in disordered protein folding on physiologically-relevant time-scales, and will likely provide great insight into the initiating processes of the Aβ misfolding, oligomerisation and amyloid formation.
  • Item
    Thumbnail Image
    Synthetic dityrosine-linked β-amyloid dimers form stable, soluble, neurotoxic oligomers
    Kok, WM ; Cottam, JM ; Ciccotosto, GD ; Miles, LA ; Karas, JA ; Scanlon, DB ; Roberts, BR ; Parker, MW ; Cappai, R ; Barnham, KJ ; Hutton, CA (ROYAL SOC CHEMISTRY, 2013)