Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 2 of 2
  • Item
    Thumbnail Image
    Regulation of PRMT5-MDM4 axis is critical in the response to CDK4/6 inhibitors in melanoma
    AbuHammad, S ; Cullinane, C ; Martin, C ; Bacolas, Z ; Ward, T ; Chen, H ; Slater, A ; Ardley, K ; Kirby, L ; Chan, KT ; Brajanovski, N ; Smith, LK ; Rao, AD ; Lelliott, EJ ; Kleinschmidt, M ; Vergara, IA ; Papenfuss, AT ; Lau, P ; Ghosh, P ; Haupt, S ; Haupt, Y ; Sanij, E ; Poortinga, G ; Pearson, RB ; Falk, H ; Curtis, DJ ; Stupple, P ; Devlin, M ; Street, I ; Davies, MA ; McArthur, GA ; Sheppard, KE (NATL ACAD SCIENCES, 2019-09-03)
    Cyclin-dependent kinase 4/6 (CDK4/6) inhibitors are an established treatment in estrogen receptor-positive breast cancer and are currently in clinical development in melanoma, a tumor that exhibits high rates of CDK4 activation. We analyzed melanoma cells with acquired resistance to the CDK4/6 inhibitor palbociclib and demonstrate that the activity of PRMT5, a protein arginine methyltransferase and indirect target of CDK4, is essential for CDK4/6 inhibitor sensitivity. By indirectly suppressing PRMT5 activity, palbociclib alters the pre-mRNA splicing of MDM4, a negative regulator of p53, leading to decreased MDM4 protein expression and subsequent p53 activation. In turn, p53 induces p21, leading to inhibition of CDK2, the main kinase substituting for CDK4/6 and a key driver of resistance to palbociclib. Loss of the ability of palbociclib to regulate the PRMT5-MDM4 axis leads to resistance. Importantly, combining palbociclib with the PRMT5 inhibitor GSK3326595 enhances the efficacy of palbociclib in treating naive and resistant models and also delays the emergence of resistance. Our studies have uncovered a mechanism of action of CDK4/6 inhibitors in regulating the MDM4 oncogene and the tumor suppressor, p53. Furthermore, we have established that palbociclib inhibition of the PRMT5-MDM4 axis is essential for robust melanoma cell sensitivity and provide preclinical evidence that coinhibition of CDK4/6 and PRMT5 is an effective and well-tolerated therapeutic strategy. Overall, our data provide a strong rationale for further investigation of novel combinations of CDK4/6 and PRMT5 inhibitors, not only in melanoma but other tumor types, including breast, pancreatic, and esophageal carcinoma.
  • Item
    Thumbnail Image
    Inhibition of RNA polymerase I transcription initiation by CX-5461 activates non-canonical ATM/ATR signaling
    Quin, J ; Chan, KT ; Devlin, JR ; Cameron, DP ; Diesch, J ; Cullinane, C ; Ahern, J ; Khot, A ; Hein, N ; George, AJ ; Hannan, KM ; Poortinga, G ; Sheppard, KE ; Khanna, KK ; Johnstone, RW ; Drygin, D ; McArthur, GA ; Pearson, RB ; Sanij, E ; Hannan, RD (IMPACT JOURNALS LLC, 2016-08-02)
    RNA polymerase I (Pol I)-mediated transcription of the ribosomal RNA genes (rDNA) is confined to the nucleolus and is a rate-limiting step for cell growth and proliferation. Inhibition of Pol I by CX-5461 can selectively induce p53-mediated apoptosis of tumour cells in vivo. Currently, CX-5461 is in clinical trial for patients with advanced haematological malignancies (Peter Mac, Melbourne). Here we demonstrate that CX-5461 also induces p53-independent cell cycle checkpoints mediated by ATM/ATR signaling in the absence of DNA damage. Further, our data demonstrate that the combination of drugs targeting ATM/ATR signaling and CX-5461 leads to enhanced therapeutic benefit in treating p53-null tumours in vivo, which are normally refractory to each drug alone. Mechanistically, we show that CX-5461 induces an unusual chromatin structure in which transcriptionally competent relaxed rDNA repeats are devoid of transcribing Pol I leading to activation of ATM signaling within the nucleoli. Thus, we propose that acute inhibition of Pol transcription initiation by CX-5461 induces a novel nucleolar stress response that can be targeted to improve therapeutic efficacy.