Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    No Preview Available
    N-Terminomic Changes in Neurons During Excitotoxicity Reveal Proteolytic Events Associated With Synaptic Dysfunctions and Potential Targets for Neuroprotection
    Ameen, SS ; Griem-Krey, N ; Dufour, A ; Hossain, MI ; Hoque, A ; Sturgeon, S ; Nandurkar, H ; Draxler, DF ; Medcalf, RL ; Kamaruddin, MA ; Lucet, IS ; Leeming, MG ; Liu, D ; Dhillon, A ; Lim, JP ; Basheer, F ; Zhu, H-J ; Bokhari, L ; Roulston, CL ; Paradkar, PN ; Kleifeld, O ; Clarkson, AN ; Wellendorph, P ; Ciccotosto, GD ; Williamson, NA ; Ang, C-S ; Cheng, H-C (ELSEVIER, 2023-05)
    Excitotoxicity, a neuronal death process in neurological disorders such as stroke, is initiated by the overstimulation of ionotropic glutamate receptors. Although dysregulation of proteolytic signaling networks is critical for excitotoxicity, the identity of affected proteins and mechanisms by which they induce neuronal cell death remain unclear. To address this, we used quantitative N-terminomics to identify proteins modified by proteolysis in neurons undergoing excitotoxic cell death. We found that most proteolytically processed proteins in excitotoxic neurons are likely substrates of calpains, including key synaptic regulatory proteins such as CRMP2, doublecortin-like kinase I, Src tyrosine kinase and calmodulin-dependent protein kinase IIβ (CaMKIIβ). Critically, calpain-catalyzed proteolytic processing of these proteins generates stable truncated fragments with altered activities that potentially contribute to neuronal death by perturbing synaptic organization and function. Blocking calpain-mediated proteolysis of one of these proteins, Src, protected against neuronal loss in a rat model of neurotoxicity. Extrapolation of our N-terminomic results led to the discovery that CaMKIIα, an isoform of CaMKIIβ, undergoes differential processing in mouse brains under physiological conditions and during ischemic stroke. In summary, by identifying the neuronal proteins undergoing proteolysis during excitotoxicity, our findings offer new insights into excitotoxic neuronal death mechanisms and reveal potential neuroprotective targets for neurological disorders.
  • Item
    Thumbnail Image
    The structure of the extracellular domains of human interleukin 11? receptor reveals mechanisms of cytokine engagement
    Metcalfe, RD ; Aizel, K ; Zlatic, CO ; Nguyen, PM ; Morton, CJ ; Lio, DS-S ; Cheng, H-C ; Dobson, RCJ ; Parker, MW ; Gooley, PR ; Putoczki, TL ; Griffin, MDW (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2020-06-12)
    Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the β-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.
  • Item
    Thumbnail Image
    The Roc-COR tandem domain of leucine-rich repeat kinase 2 forms dimers and exhibits conventional Ras-like GTPase properties
    Mills, RD ; Liang, L-Y ; Lio, DS-S ; Mok, Y-F ; Mulhern, TD ; Cao, G ; Griffin, M ; Kenche, VB ; Culvenor, JG ; Cheng, H-C (WILEY, 2018-11)
    The Parkinson's disease (PD)-causative leucine-rich repeat kinase 2 (LRRK2) belongs to the Roco family of G-proteins comprising a Ras-of-complex (Roc) domain followed by a C-terminal of Roc (COR) domain in tandem (called Roc-COR domain). Two prokaryotic Roc-COR domains have been characterized as 'G proteins activated by guanine nucleotide-dependent dimerization' (GADs), which require dimerization for activation of their GTPase activity and bind guanine nucleotides with relatively low affinities. Additionally, LRRK2 Roc domain in isolation binds guanine nucleotides with relatively low affinities. As such, LRRK2 GTPase domain was predicted to be a GAD. Herein, we describe the design and high-level expression of human LRRK2 Roc-COR domain (LRRK2 Roc-COR). Biochemical analyses of LRRK2 Roc-COR reveal that it forms homodimers, with the C-terminal portion of COR mediating its dimerization. Furthermore, it co-purifies and binds Mg2+ GTP/GDP at 1 : 1 stoichiometry, and it hydrolyzes GTP with Km  and kcat  of 22 nM and 4.70 × 10-4  min-1 ,  respectively. Thus, even though LRRK2 Roc-COR forms GAD-like homodimers, it exhibits conventional Ras-like GTPase properties, with high-affinity binding of Mg2+ -GTP/GDP and low intrinsic catalytic activity. The PD-causative Y1699C mutation mapped to the COR domain was previously reported to reduce the GTPase activity of full-length LRRK2. In contrast, this mutation induces no change in the GTPase activity, and only slight perturbations in the secondary structure contents of LRRK2 Roc-COR. As this mutation does not directly affect the GTPase activity of the isolated Roc-COR tandem, it is possible that the effects of this mutation on full-length LRRK2 occur via other functional domains. Open Practices Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.
  • Item
    Thumbnail Image
    Modulating Astrocyte Transition after Stroke to Promote Brain Rescue and Functional Recovery: Emerging Targets Include Rho Kinase
    Abeysinghe, HCS ; Phillips, EL ; Chin-Cheng, H ; Beart, PM ; Roulston, CL (MDPI, 2016-03)
    Stroke is a common and serious condition, with few therapies. Whilst previous focus has been directed towards biochemical events within neurons, none have successfully prevented the progression of injury that occurs in the acute phase. New targeted treatments that promote recovery after stroke might be a better strategy and are desperately needed for the majority of stroke survivors. Cells comprising the neurovascular unit, including blood vessels and astrocytes, present an alternative target for supporting brain rescue and recovery in the late phase of stroke, since alteration in the unit also occurs in regions outside of the lesion. One of the major changes in the unit involves extensive morphological transition of astrocytes resulting in altered energy metabolism, decreased glutamate reuptake and recycling, and retraction of astrocyte end feed from both blood vessels and neurons. Whilst globally inhibiting transitional change in astrocytes after stroke is reported to result in further damage and functional loss, we discuss the available evidence to suggest that the transitional activation of astrocytes after stroke can be modulated for improved outcomes. In particular, we review the role of Rho-kinase (ROCK) in reactive gliosis and show that inhibiting ROCK after stroke results in reduced scar formation and improved functional recovery.
  • Item
    Thumbnail Image
    Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine
    Advani, G ; Lim, YC ; Catimel, B ; Lio, DSS ; Ng, NLY ; Chueh, AC ; Tran, M ; Anasir, MI ; Verkade, H ; Zhu, H-J ; Turk, BE ; Smithgall, TE ; Ang, C-S ; Griffin, M ; Cheng, H-C (BIOMED CENTRAL LTD, 2017-08-07)
    BACKGROUND: C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis. Second, they employ a non-catalytic inhibitory mechanism involving direct binding of Csk and Chk to the active forms of SFKs that is independent of phosphorylation of their C-terminal tail. Csk and Chk are co-expressed in many cell types. Contributions of the two mechanisms towards the inhibitory activity of Csk and Chk are not fully clear. Furthermore, the determinants in Csk and Chk governing their inhibition of SFKs by the non-catalytic inhibitory mechanism are yet to be defined. METHODS: We determined the contributions of the two mechanisms towards the inhibitory activity of Csk and Chk both in vitro and in transduced colorectal cancer cells. Specifically, we assayed the catalytic activities of Csk and Chk in phosphorylating a specific peptide substrate and a recombinant SFK member Src. We employed surface plasmon resonance spectroscopy to measure the kinetic parameters of binding of Csk, Chk and their mutants to a constitutively active mutant of the SFK member Hck. Finally, we determined the effects of expression of recombinant Chk on anchorage-independent growth and SFK catalytic activity in Chk-deficient colorectal cancer cells. RESULTS: Our results revealed Csk as a robust enzyme catalysing phosphorylation of the C-terminal tail tyrosine of SFKs but a weak non-catalytic inhibitor of SFKs. In contrast, Chk is a poor catalyst of SFK tail phosphorylation but binds SFKs with high affinity, enabling it to efficiently inhibit SFKs with the non-catalytic inhibitory mechanism both in vitro and in transduced colorectal cancer cells. Further analyses mapped some of the determinants governing this non-catalytic inhibitory mechanism of Chk to its kinase domain. CONCLUSIONS: SFKs are activated by different upstream signals to adopt multiple active conformations in cells. SFKs adopting these conformations can effectively be constrained by the two complementary inhibitory mechanisms of Csk and Chk. Furthermore, the lack of this non-catalytic inhibitory mechanism accounts for SFK overactivation in the Chk-deficient colorectal cancer cells.
  • Item
    Thumbnail Image
    Hemopoietic Cell Kinase amplification with Protein Tyrosine Phosphatase Receptor T depletion leads to polycythemia, aberrant marrow erythoid maturation, and splenomegaly
    Ku, M ; MacKinnon, RN ; Wall, M ; Narayan, N ; Walkley, C ; Cheng, H-C ; Campbell, LJ ; Purton, LE ; Nandurkar, H (NATURE PUBLISHING GROUP, 2019-05-07)
    Deletion of long arm of chromosome 20 [del(20q)] is the second most frequent recurrent chromosomal abnormality in hematological malignancies. It is detected in 10% of myeloproliferative neoplasms, 4-5% of myelodysplastic syndromes, and 1-2% of acute myeloid leukaemia. Recurrent, non-random occurrence of del(20q) indicates that it is a pathogenic driver in myeloid malignancies. Genetic mapping of patient samples has identified two regions of interest on 20q - the "Common Deleted Region" (CDR) and "Common Retained Region" (CRR), which was often amplified. We proposed that the CDR contained tumor suppressor gene(s) (TSG) and the CRR harbored oncogene(s); loss of a TSG together with over-expression of an oncogene favored development of myeloid malignancies. Protein Tyrosine Phosphatase Receptor T (PTPRT) and Hemopoietic cell kinase (HCK) were identified to be the likely candidate TSG and oncogene respectively. Retroviral transduction of HCK into PTPRT-null murine LKS+ stem and progenitor cells resulted in hyperproliferation in colony forming assays and hyperphosphorylation of intracellular STAT3. Furthermore, over half of the murine recipients of these transduced cells developed erythroid hyperplasia, polycythemia and splenomegaly at 12 months, although no leukemic phenotype was observed. The findings suggested that HCK amplification coupled with PTPRT loss in del(20q) leads to development of a myeloproliferative phenotype.
  • Item
    Thumbnail Image
    Quantitative proteomic analyses of dynamic signalling events in cortical neurons undergoing excitotoxic cell death
    Hoque, A ; Williamson, NA ; Ameen, SS ; Ciccotosto, GD ; Hossain, MI ; Oakhill, JS ; Ng, DCH ; Ang, C-S ; Cheng, H-C (NATURE PUBLISHING GROUP, 2019-03-01)
    Excitotoxicity, caused by overstimulation or dysregulation of ionotropic glutamate receptors (iGluRs), is a pathological process directing neuronal death in many neurological disorders. The aberrantly stimulated iGluRs direct massive influx of calcium ions into the affected neurons, leading to changes in expression and phosphorylation of specific proteins to modulate their functions and direct their participation in the signalling pathways that induce excitotoxic neuronal death. To define these pathways, we used quantitative proteomic approaches to identify these neuronal proteins (referred to as the changed proteins) and determine how their expression and/or phosphorylation dynamically changed in association with excitotoxic cell death. Our data, available in ProteomeXchange with identifier PXD008353, identified over 100 changed proteins exhibiting significant alterations in abundance and/or phosphorylation levels at different time points (5-240 min) in neurons after glutamate overstimulation. Bioinformatic analyses predicted that many of them are components of signalling networks directing defective neuronal morphology and functions. Among them, the well-known neuronal survival regulators including mitogen-activated protein kinases Erk1/2, glycogen synthase kinase 3 (GSK3) and microtubule-associated protein (Tau), were selected for validation by biochemical approaches, which confirmed the findings of the proteomic analysis. Bioinformatic analysis predicted Protein Kinase B (Akt), c-Jun kinase (JNK), cyclin-dependent protein kinase 5 (Cdk5), MAP kinase kinase (MEK), Casein kinase 2 (CK2), Rho-activated protein kinase (Rock) and Serum/glucocorticoid-regulated kinase 1 (SGK1) as the potential upstream kinases phosphorylating some of the changed proteins. Further biochemical investigation confirmed the predictions of sustained changes of the activation states of neuronal Akt and CK2 in excitotoxicity. Thus, future investigation to define the signalling pathways directing the dynamic alterations in abundance and phosphorylation of the identified changed neuronal proteins will help elucidate the molecular mechanism of neuronal death in excitotoxicity.
  • Item
    Thumbnail Image
    Analysis of LRRK2 accessory repeat domains: prediction of repeat length, number and sites of Parkinson's disease mutations
    MILLS, R ; Mulhern, TD ; Cheng, HC ; Culvenor, JG ( 2012)
    Various investigators have identified the major domain organization of LRRK2 (leucine-rich repeat kinase 2), which includes a GTPase ROC (Ras of complex proteins) domain followed by a COR (C-terminal of ROC) domain and a protein kinase domain. In addition, there are four domains composed of structural repeat motifs likely to be involved in regulation and localization of this complex protein. In the present paper, we report our bioinformatic analyses of the human LRRK2 amino acid sequence to predict the repeat size, number and likely boundaries for the armadillo repeat, ankyrin repeat, the leucine-rich repeat and WD40 repeat regions of LRRK2. Homology modelling using known protein structures with similar domains was used to predict structures, exposed residues and location of mutations for these repeat regions. We predict that the armadillo repeats, ankyrin repeats and leucine-rich repeats together form an extended N-terminal flexible 'solenoid'-like structure composed of tandem repeat modules likely to be important in anchoring to the membrane and cytoskeletal structures as well as binding to other protein ligands. Near the C-terminus of LRRK2, the WD40 repeat region is predicted to form a closed propeller structure that is important for protein complex formation.
  • Item
    Thumbnail Image
    Aberrant regulation and function of Src family tyrosine kinases: Their potential contributions to glutamate-induced neurotoxicity
    Hossain, MI ; Kamaruddin, MA ; Cheng, H-C (WILEY, 2012-08)
    Excitotoxicity, a major cause of neuronal death in acute and chronic neurodegenerative diseases and conditions such as stroke and Parkinson's disease, is initiated by overstimulation of glutamate receptors, leading to calcium overload in affected neurons. The sustained high concentration of intracellular calcium constitutively activates a host of enzymes, notably the calcium-activated proteases calpains, neuronal nitric oxide synthase (nNOS) and NADPH oxidase (NOX), to antagonise the cell survival signalling pathways and induce cell death. Upon overactivation by calcium, calpains catalyse limited proteolysis of specific cellular proteins to modulate their functions; nNOS produces excessive amounts of nitric oxide (NO), which, in turn, covalently modifies specific enzymes by S-nitrosylation; and NOX produces excessive amounts of reactive oxygen species (ROS) to inflict damage to key metabolic enzymes. Presumably, key regulatory enzymes governing cell survival and cell death are aberrantly modified and regulated by calpains, NO and ROS in affected neurons; these aberrantly modified enzymes then cooperate to induce the death of affected neurons. c-Src, an Src family kinase (SFK) member, is one of the aberrantly regulated enzymes involved in excitotoxic neuronal death. Herein we review how SFKs are functionally linked to the glutamate receptors and the biochemical and structural basis of the aberrant regulation of SFKs. Results in the literature suggest that SFKs are aberrantly activated by calpain-mediated truncation and S-nitrosylation. Thus, the aberrantly activated SFKs are targets for therapeutic intervention to reduce the extent of brain damage caused by stroke.
  • Item
    Thumbnail Image
    A Truncated Fragment of Src Protein Kinase Generated by Calpain-mediated Cleavage Is a Mediator of Neuronal Death in Excitotoxicity
    Hossain, MI ; Roulston, CL ; Kamaruddin, MA ; Chu, PWY ; Ng, DCH ; Dusting, GJ ; Bjorge, JD ; Williamson, NA ; Fujita, DJ ; Cheung, SN ; Chan, TO ; Hill, AF ; Cheng, H-C (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2013-04-05)
    Excitotoxicity resulting from overstimulation of glutamate receptors is a major cause of neuronal death in cerebral ischemic stroke. The overstimulated ionotropic glutamate receptors exert their neurotoxic effects in part by overactivation of calpains, which induce neuronal death by catalyzing limited proteolysis of specific cellular proteins. Here, we report that in cultured cortical neurons and in vivo in a rat model of focal ischemic stroke, the tyrosine kinase Src is cleaved by calpains at a site in the N-terminal unique domain. This generates a truncated Src fragment of ~52 kDa, which we localized predominantly to the cytosol. A cell membrane-permeable fusion peptide derived from the unique domain of Src prevents calpain from cleaving Src in neurons and protects against excitotoxic neuronal death. To explore the role of the truncated Src fragment in neuronal death, we expressed a recombinant truncated Src fragment in cultured neurons and examined how it affects neuronal survival. Expression of this fragment, which lacks the myristoylation motif and unique domain, was sufficient to induce neuronal death. Furthermore, inactivation of the prosurvival kinase Akt is a key step in its neurotoxic signaling pathway. Because Src maintains neuronal survival, our results implicate calpain cleavage as a molecular switch converting Src from a promoter of cell survival to a mediator of neuronal death in excitotoxicity. Besides unveiling a new pathological action of Src, our discovery of the neurotoxic action of the truncated Src fragment suggests new therapeutic strategies with the potential to minimize brain damage in ischemic stroke.