Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 33
  • Item
    No Preview Available
    Associations Between Systemic and Cerebral Inflammation in an Ovine Model of Cardiopulmonary Bypass
    Elsaafien, K ; Sloan, JM ; Evans, RG ; Cochrane, AD ; Marino, B ; McCall, PR ; Hood, SG ; Yao, ST ; Korim, WS ; Bailey, SR ; Jufar, AH ; Peiris, RM ; Bellomo, R ; Miles, LF ; May, CN ; Lankadeva, YR (LIPPINCOTT WILLIAMS & WILKINS, 2023-04)
    BACKGROUND: Intraoperative inflammation may contribute to postoperative neurocognitive disorders after cardiac surgery requiring cardiopulmonary bypass (CPB). However, the relative contributions of general anesthesia (GA), surgical site injury, and CPB are unclear. METHODS: In adult female sheep, we investigated (1) the temporal profile of proinflammatory and anti-inflammatory cytokines and (2) the extent of microglia activation across major cerebral cortical regions during GA and surgical trauma with and without CPB (N = 5/group). Sheep were studied while conscious, during GA and surgical trauma, with and without CPB. RESULTS: Plasma tumor necrosis factor-alpha (mean [95% confidence intervals], 3.7 [2.5-4.9] vs 1.6 [0.8-2.3] ng/mL; P = .0004) and interleukin-6 levels (4.4 [3.0-5.8] vs 1.6 [0.8-2.3] ng/mL; P = .029) were significantly higher at 1.5 hours, with a further increase in interleukin-6 at 3 hours (7.0 [3.7-10.3] vs 1.8 [1.1-2.6] ng/mL; P < .0001) in animals undergoing CPB compared with those that did not. Although cerebral oxygen saturation was preserved throughout CPB, there was pronounced neuroinflammation as characterized by greater microglia circularity within the frontal cortex of sheep that underwent CPB compared with those that did not (0.34 [0.32-0.37] vs 0.30 [0.29-0.32]; P = .029). Moreover, microglia had fewer branches within the parietal (7.7 [6.5-8.9] vs 10.9 [9.4-12.5]; P = .001) and temporal (7.8 [7.2-8.3] vs 9.9 [8.2-11.7]; P = .020) cortices in sheep that underwent CPB compared with those that did not. CONCLUSIONS: CPB enhanced the release of proinflammatory cytokines beyond that initiated by GA and surgical trauma. This systemic inflammation was associated with microglial activation across 3 major cerebral cortical regions, with a phagocytic microglia phenotype within the frontal cortex, and an inflammatory microglia phenotype within the parietal and temporal cortices. These data provide direct histopathological evidence of CPB-induced neuroinflammation in a large animal model and provide further mechanistic data on how CPB-induced cerebral inflammation might drive postoperative neurocognitive disorders in humans.
  • Item
    No Preview Available
    Dynamic responses of renal oxygenation at the onset of cardiopulmonary bypass in sheep and man
    Evans, RG ; Cochrane, AD ; Hood, SG ; Iguchi, N ; Marino, B ; Bellomo, R ; McCall, PR ; Okazaki, N ; Smith, JA ; Zhu, MZL ; Ngo, JP ; Noe, KM ; Martin, A ; Thrift, AG ; Lankadeva, YR ; May, CN (SAGE PUBLICATIONS LTD, 2022-09-01)
    INTRODUCTION: The renal medulla is susceptible to hypoxia during cardiopulmonary bypass (CPB), which may contribute to the development of acute kidney injury. But the speed of onset of renal medullary hypoxia remains unknown. METHODS: We continuously measured renal medullary oxygen tension (MPO2) in 24 sheep, and urinary PO2 (UPO2) as an index of MPO2 in 92 patients, before and after induction of CPB. RESULTS: In laterally recumbent sheep with a right thoracotomy (n = 20), even before CPB commenced MPO2 fell from (mean ± SEM) 52 ± 4 to 41 ±5 mmHg simultaneously with reduced arterial pressure (from 108 ± 5 to 88 ± 5 mmHg). In dorsally recumbent sheep with a medial sternotomy (n = 4), MPO2 was even more severely reduced (to 12 ± 12 mmHg) before CPB. In laterally recumbent sheep in which a crystalloid prime was used (n = 7), after commencing CPB, MPO2 fell abruptly to 24 ±6 mmHg within 20-30 minutes. MPO2 during CPB was not improved by adding donor blood to the prime (n = 13). In patients undergoing cardiac surgery, UPO2 fell by 4 ± 1 mmHg and mean arterial pressure fell by 7 ± 1 mmHg during the 30 minutes before CPB. UPO2 then fell by a further 12 ± 2 mmHg during the first 30 minutes of CPB but remained relatively stable for the remaining 24 minutes of observation. CONCLUSIONS: Renal medullary hypoxia is an early event during CPB. It starts to develop even before CPB, presumably due to a pressure-dependent decrease in renal blood flow. Medullary hypoxia during CPB appears to be promoted by hypotension and is not ameliorated by increasing blood hemoglobin concentration.
  • Item
    No Preview Available
    Renal Denervation in Combination With Angiotensin Receptor Blockade Prolongs Blood Pressure Trough During Hemorrhage
    Singh, RR ; McArdle, Z ; Booth, LC ; May, CN ; Head, GA ; Moritz, KM ; Schlaich, MP ; Denton, KM (LIPPINCOTT WILLIAMS & WILKINS, 2022-01)
    Majority of patients with hypertension and chronic kidney disease (CKD) undergoing renal denervation (RDN) are maintained on antihypertensive medication. However, RDN may impair compensatory responses to hypotension induced by blood loss. Therefore, continuation of antihypertensive medications in denervated patients may exacerbate hypotensive episodes. This study examined whether antihypertensive medication compromised hemodynamic responses to blood loss in normotensive (control) sheep and in sheep with hypertensive CKD at 30 months after RDN (control-RDN, CKD-RDN) or sham (control-intact, CKD-intact) procedure. CKD-RDN sheep had lower basal blood pressure (BP; ≈9 mm Hg) and higher basal renal blood flow (≈38%) than CKD-intact. Candesartan lowered BP and increased renal blood flow in all groups. 10% loss of blood volume alone caused a modest fall in BP (≈6-8 mm Hg) in all groups but did not affect the recovery of BP. 10% loss of blood volume in the presence of candesartan prolonged the time at trough BP by 9 minutes and attenuated the fall in renal blood flow in the CKD-RDN group compared with CKD-intact. Candesartan in combination with RDN prolonged trough BP and attenuated renal hemodynamic responses to blood loss. To minimize the risk of hypotension-mediated organ damage, patients with RDN maintained on antihypertensive medications may require closer monitoring when undergoing surgery or experiencing traumatic blood loss.
  • Item
    No Preview Available
    The effects of recruitment of renal functional reserve on renal cortical and medullary oxygenation in non-anesthetized sheep
    Jufar, AH ; Evans, RG ; May, CN ; Hood, SG ; Betrie, AH ; Trask-Marino, A ; Bellomo, R ; Lankadeva, YR (WILEY, 2023-04)
    AIM: Recruitment of renal functional reserve (RFR) with amino acid loading increases renal blood flow and glomerular filtration rate. However, its effects on renal cortical and medullary oxygenation have not been determined. Accordingly, we tested the effects of recruitment of RFR on renal cortical and medullary oxygenation in non-anesthetized sheep. METHODS: Under general anesthesia, we instrumented 10 sheep to enable subsequent continuous measurements of systemic and renal hemodynamics, renal oxygen delivery and consumption, and cortical and medullary tissue oxygen tension (PO2 ). We then measured the effects of recruitment of RFR with an intravenous infusion of 500 ml of a clinically used amino acid solution (10% Synthamin® 17) in the non-anesthetized state. RESULTS: Compared with baseline, Synthamin® 17 infusion significantly increased renal oxygen delivery mean ± SD maximum increase: (from 0.79 ± 0.17 to 1.06 ± 0.16 ml/kg/min, p < 0.001), renal oxygen consumption (from 0.08 ± 0.01 to 0.15 ± 0.02 ml/kg/min, p < 0.001), and glomerular filtration rate (+45.2 ± 2.7%, p < 0.001). Renal cortical tissue PO2 increased by a maximum of 26.4 ± 1.1% (p = 0.001) and medullary tissue PO2 increased by a maximum of 23.9 ± 2.8% (p = 0. 001). CONCLUSIONS: In non-anesthetized healthy sheep, recruitment of RFR improved renal cortical and medullary oxygenation. These observations might have implications for the use of recruitment of RFR for diagnostic and therapeutic purposes.
  • Item
    Thumbnail Image
    Influence of moderate hypothermia on renal and cerebral haemodynamics and oxygenation during experimental cardiopulmonary bypass in sheep
    Jufar, AH ; May, CN ; Evans, RG ; Cochrane, AD ; Marino, B ; Hood, SG ; McCall, PR ; Bellomo, R ; Lankadeva, YR (WILEY, 2022-09)
    AIM: Cardiac surgery requiring cardiopulmonary bypass (CPB) can result in renal and cerebral injury. Intraoperative tissue hypoxia could contribute to such organ injury. Hypothermia, however, may alleviate organ hypoxia. Therefore, we tested whether moderate hypothermia (30°C) improves cerebral and renal tissue perfusion and oxygenation during ovine CPB. METHODS: Ten sheep were studied while conscious, under stable anesthesia, and during 3 h of CPB. In a randomized within-animal cross-over design, five sheep commenced CPB at a target body temperature of 30°C (moderate hypothermia). After 90 min, the body temperature was increased to 36°C (standard procedure). The remaining five sheep were randomized to the opposite order of target body temperature. RESULTS: Compared with the standard procedure, moderately hypothermic CPB reduced renal oxygen delivery (-34.8% ± 19.6%, P = 0.003) and renal oxygen consumption (-42.7% ± 35.2%, P = 0.04). Nevertheless, moderately hypothermic CPB did not significantly alter either renal cortical or medullary tissue PO2 . Moderately hypothermic CPB also did not significantly alter cerebral perfusion, cerebral tissue PO2 , or cerebral oxygen saturation compared with the standard procedure. Compared with the anesthetized state, the standard procedure reduced renal medullary PO2 (-21.0 ± 13.8 mmHg, P = 0.014) and cerebral oxygen saturation (65.0% ± 7.0% to 55.4% ± 9.6%, P = 0.022) but did not significantly alter either renal cortical or cerebral PO2 . CONCLUSION: Ovine experimental CPB leads to renal medullary tissue hypoxia. Moderately hypothermic CPB did not improve cerebral or renal tissue oxygenation. In the kidney, this is probably because renal tissue oxygen consumption is matched by reduced renal oxygen delivery.
  • Item
    No Preview Available
    Vascular remodeling in sheep implanted with endovascular neural interface
    John, SE ; Donegan, S ; Scordas, TC ; Qi, W ; Sharma, P ; Liyanage, K ; Wilson, S ; Birchall, I ; Ooi, A ; Oxley, TJ ; May, CN ; Grayden, DB ; Opie, NL (IOP Publishing Ltd, 2022-10-01)
    Objective.The aim of this work was to assess vascular remodeling after the placement of an endovascular neural interface (ENI) in the superior sagittal sinus (SSS) of sheep. We also assessed the efficacy of neural recording using an ENI.Approach.The study used histological analysis to assess the composition of the foreign body response. Micro-CT images were analyzed to assess the profiles of the foreign body response and create a model of a blood vessel. Computational fluid dynamic modeling was performed on a reconstructed blood vessel to evaluate the blood flow within the vessel. Recording of brain activity in sheep was used to evaluate efficacy of neural recordings.Main results.Histological analysis showed accumulated extracellular matrix material in and around the implanted ENI. The extracellular matrix contained numerous macrophages, foreign body giant cells, and new vascular channels lined by endothelium. Image analysis of CT slices demonstrated an uneven narrowing of the SSS lumen proportional to the stent material within the blood vessel. However, the foreign body response did not occlude blood flow. The ENI was able to record epileptiform spiking activity with distinct spike morphologies.Significance. This is the first study to show high-resolution tissue profiles, the histological response to an implanted ENI and blood flow dynamic modeling based on blood vessels implanted with an ENI. The results from this study can be used to guide surgical planning and future ENI designs; stent oversizing parameters to blood vessel diameter should be considered to minimize detrimental vascular remodeling.
  • Item
    Thumbnail Image
    Role of perioperative hypotension in postoperative acute kidney injury: a narrative review
    Lankadeva, YR ; May, CN ; Bellomo, R ; Evans, RG (ELSEVIER SCI LTD, 2022-06)
    Perioperative hypotension is common and associated with poor outcomes, including acute kidney injury (AKI). The mechanistic link between perioperative hypotension and AKI is at least partly a consequence of the susceptibility of the kidney, and particularly the renal medulla, to ischaemia and hypoxia. Several critical gaps in our knowledge lead to uncertainty about when and how to intervene to prevent AKI attributable to perioperative hypotension. First, although we know that the risk of AKI varies with both the severity and duration of hypotensive episodes, 'safe' levels of arterial pressure have not been identified. Second, there have been few adequately powered clinical trials of interventions to avoid perioperative hypotension. Thus, most evidence surrounding perioperative hypotension is observational rather than based on randomised clinical trials. This means that the link between perioperative hypotension and AKI may represent association (where both phenomena reflect illness severity) rather than causation. Third, there is little information regarding the relative risks and benefits of various clinically available therapies (e.g. vasoconstrictors, i.v. fluids, or both) to treat and prevent perioperative hypotension, particularly with regard to renal medullary perfusion and oxygenation. Fourth, there are currently no validated, clinically feasible methods for real-time clinical monitoring of renal perfusion or oxygenation. Thus, future developments in perioperative kidney-protective strategies must rely on the development of methods to better monitor renal perfusion and oxygenation in the perioperative period, and thereby guide timing, intensity, type, and duration of interventions.
  • Item
    Thumbnail Image
    Preclinical safety study of a fully implantable, sub-scalp ring electrode array for long-term EEG recordings
    Benovitski, YB ; Lai, A ; Saunders, A ; McGowan, CC ; Burns, O ; Nayagam, DAX ; Millard, R ; Harrison, M ; Rathbone, GD ; Williams, RA ; May, CN ; Murphy, M ; D'Souza, WJ ; Cook, MJ ; Williams, CE (IOP Publishing Ltd, 2022-06-01)
    OBJECTIVE: Long-term electroencephalogram (EEG) recordings can aid diagnosis and management of various neurological conditions such as epilepsy. In this study we characterize the safety and stability of a clinical grade ring electrode arrays by analyzing EEG recordings, fluoroscopy, and computed tomography (CT) imaging with long-term implantation and histopathological tissue response. APPROACH: Seven animals were chronically implanted with EEG recording array consisting of four electrode contacts. Recordings were made bilaterally using a bipolar longitudinal montage. The array was connected to a fully implantable micro-processor controlled electronic device with two low-noise differential amplifiers and a transmitter-receiver coil. An external wearable was used to power, communicate with the implant via an inductive coil, and store the data. The sub-scalp electrode arrays were made using medical grade silicone and platinum. The electrode arrays were tunneled in the subgaleal cleavage plane between the periosteum and the overlying dermis. These were implanted for 3-7 months before euthanasia and histopathological assessment. EEG and impedance were recorded throughout the study. MAIN RESULTS: Impedance measurements remained low throughout the study for 11 of 12 channels over the recording period ranged from 3 to 5 months. There was also a steady amplitude of slow-wave EEG and chewing artifact (noise). The post-mortem CT and histopathology showed the electrodes remained in the subgaleal plane in 6 of 7 sheep. There was minimal inflammation with a thin fibrotic capsule that ranged from 4 to 101μm. There was a variable fibrosis in the subgaleal plane extending from 210 to 3617μm (S3-S7) due to surgical cleavage. One sheep had an inflammatory reaction due to electrode extrusion. The passive electrode array extraction force was around 1N. SIGNIFICANCE: Results show sub-scalp electrode placement was safe and stable for long term implantation. This is advantageous for diagnosis and management of neurological conditions where long-term, EEG monitoring is required.
  • Item
    Thumbnail Image
    Targeting Oxidative Stress in Septic Acute Kidney Injury: From Theory to Practice
    Ow, CPC ; Trask-Marino, A ; Betrie, AH ; Evans, RG ; May, CN ; Lankadeva, YR (MDPI, 2021-09)
    Sepsis is the leading cause of acute kidney injury (AKI) and leads to increased morbidity and mortality in intensive care units. Current treatments for septic AKI are largely supportive and are not targeted towards its pathophysiology. Sepsis is commonly characterized by systemic inflammation and increased production of reactive oxygen species (ROS), particularly superoxide. Concomitantly released nitric oxide (NO) then reacts with superoxide, leading to the formation of reactive nitrogen species (RNS), predominantly peroxynitrite. Sepsis-induced ROS and RNS can reduce the bioavailability of NO, mediating renal microcirculatory abnormalities, localized tissue hypoxia and mitochondrial dysfunction, thereby initiating a propagating cycle of cellular injury culminating in AKI. In this review, we discuss the various sources of ROS during sepsis and their pathophysiological interactions with the immune system, microcirculation and mitochondria that can lead to the development of AKI. We also discuss the therapeutic utility of N-acetylcysteine and potential reasons for its efficacy in animal models of sepsis, and its inefficacy in ameliorating oxidative stress-induced organ dysfunction in human sepsis. Finally, we review the pre-clinical studies examining the antioxidant and pleiotropic actions of vitamin C that may be of benefit for mitigating septic AKI, including future implications for clinical sepsis.
  • Item
    Thumbnail Image
    Blunted natriuretic response to saline loading in sheep with hypertensive kidney disease following radiofrequency catheter-based renal denervation
    Singh, RR ; McArdle, Z ; Singh, H ; Booth, LC ; May, CN ; Head, GA ; Moritz, KM ; Schlaich, MP ; Denton, KM (NATURE PORTFOLIO, 2021-07-20)
    Renal sympathetic nerves contribute to renal excretory function during volume expansion. We hypothesized that intact renal innervation is required for excretion of a fluid/electrolyte load in hypertensive chronic kidney disease (CKD) and normotensive healthy settings. Blood pressure, kidney hemodynamic and excretory response to 180 min of isotonic saline loading (0.13 ml/kg/min) were examined in female normotensive (control) and hypertensive CKD sheep at 2 and 11 months after sham (control-intact, CKD-intact) or radiofrequency catheter-based RDN (control-RDN, CKD-RDN) procedure. Basal blood pressure was ~ 7 to 9 mmHg lower at 2, and 11 months in CKD-RDN compared with CKD-intact sheep. Saline loading did not alter glomerular filtration rate in any group. At 2 months, in response to saline loading, total urine and sodium excretion were ~ 40 to 50% less, in control-RDN and CKD-RDN than intact groups. At 11 months, the natriuretic and diuretic response to saline loading were similar between control-intact, control-RDN and CKD-intact groups but sodium excretion was ~ 42% less in CKD-RDN compared with CKD-intact at this time-point. These findings indicate that chronic withdrawal of basal renal sympathetic activity impairs fluid/electrolyte excretion during volume expansion. Clinically, a reduced ability to excrete a saline load following RDN may contribute to disturbances in body fluid balance in hypertensive CKD.