Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 16
  • Item
    Thumbnail Image
    C-reactive protein, immunothrombosis and venous thromboembolism.
    Dix, C ; Zeller, J ; Stevens, H ; Eisenhardt, SU ; Shing, KSCT ; Nero, TL ; Morton, CJ ; Parker, MW ; Peter, K ; McFadyen, JD (Frontiers Media SA, 2022)
    C-reactive protein (CRP) is a member of the highly conserved pentraxin superfamily of proteins and is often used in clinical practice as a marker of infection and inflammation. There is now increasing evidence that CRP is not only a marker of inflammation, but also that destabilized isoforms of CRP possess pro-inflammatory and pro-thrombotic properties. CRP circulates as a functionally inert pentameric form (pCRP), which relaxes its conformation to pCRP* after binding to phosphocholine-enriched membranes and then dissociates to monomeric CRP (mCRP). with the latter two being destabilized isoforms possessing highly pro-inflammatory features. pCRP* and mCRP have significant biological effects in regulating many of the aspects central to pathogenesis of atherothrombosis and venous thromboembolism (VTE), by directly activating platelets and triggering the classical complement pathway. Importantly, it is now well appreciated that VTE is a consequence of thromboinflammation. Accordingly, acute VTE is known to be associated with classical inflammatory responses and elevations of CRP, and indeed VTE risk is elevated in conditions associated with inflammation, such as inflammatory bowel disease, COVID-19 and sepsis. Although the clinical data regarding the utility of CRP as a biomarker in predicting VTE remains modest, and in some cases conflicting, the clinical utility of CRP appears to be improved in subsets of the population such as in predicting VTE recurrence, in cancer-associated thrombosis and in those with COVID-19. Therefore, given the known biological function of CRP in amplifying inflammation and tissue damage, this raises the prospect that CRP may play a role in promoting VTE formation in the context of concurrent inflammation. However, further investigation is required to unravel whether CRP plays a direct role in the pathogenesis of VTE, the utility of which will be in developing novel prophylactic or therapeutic strategies to target thromboinflammation.
  • Item
    Thumbnail Image
    Mechanism of Bloom syndrome complex assembly required for double Holliday junction dissolution and genome stability
    Hodson, C ; Low, JKK ; van Twest, S ; Jones, SE ; Swuec, P ; Murphy, V ; Tsukada, K ; Fawkes, M ; Bythell-Douglas, R ; Davies, A ; Holien, JK ; O'Rourke, JJ ; Parker, BL ; Glaser, A ; Parker, MW ; Mackay, JP ; Blackford, AN ; Costa, A ; Deans, AJ (NATL ACAD SCIENCES, 2022-02-08)
    The RecQ-like helicase BLM cooperates with topoisomerase IIIα, RMI1, and RMI2 in a heterotetrameric complex (the "Bloom syndrome complex") for dissolution of double Holliday junctions, key intermediates in homologous recombination. Mutations in any component of the Bloom syndrome complex can cause genome instability and a highly cancer-prone disorder called Bloom syndrome. Some heterozygous carriers are also predisposed to breast cancer. To understand how the activities of BLM helicase and topoisomerase IIIα are coupled, we purified the active four-subunit complex. Chemical cross-linking and mass spectrometry revealed a unique architecture that links the helicase and topoisomerase domains. Using biochemical experiments, we demonstrated dimerization mediated by the N terminus of BLM with a 2:2:2:2 stoichiometry within the Bloom syndrome complex. We identified mutations that independently abrogate dimerization or association of BLM with RMI1, and we show that both are dysfunctional for dissolution using in vitro assays and cause genome instability and synthetic lethal interactions with GEN1/MUS81 in cells. Truncated BLM can also inhibit the activity of full-length BLM in mixed dimers, suggesting a putative mechanism of dominant-negative action in carriers of BLM truncation alleles. Our results identify critical molecular determinants of Bloom syndrome complex assembly required for double Holliday junction dissolution and maintenance of genome stability.
  • Item
    Thumbnail Image
    Structure-function analysis of the AMPK activator SC4 and identification of a potent pan AMPK activator
    Ovens, AJ ; Gee, YS ; Ling, NXY ; Yu, D ; Hardee, JP ; Chung, JD ; Ngoei, KRW ; Waters, NJ ; Hoffman, NJ ; Scott, JW ; Loh, K ; Spengler, K ; Heller, R ; Parker, MW ; Lynch, GS ; Huang, F ; Galic, S ; Kemp, BE ; Baell, JB ; Oakhill, JS ; Langendorf, CG (PORTLAND PRESS LTD, 2022-06-01)
    The AMP-activated protein kinase (AMPK) αβγ heterotrimer is a primary cellular energy sensor and central regulator of energy homeostasis. Activating skeletal muscle AMPK with small molecule drugs improves glucose uptake and provides an opportunity for new strategies to treat type 2 diabetes and insulin resistance, with recent genetic and pharmacological studies indicating the α2β2γ1 isoform combination as the heterotrimer complex primarily responsible. With the goal of developing α2β2-specific activators, here we perform structure/function analysis of the 2-hydroxybiphenyl group of SC4, an activator with tendency for α2-selectivity that is also capable of potently activating β2 complexes. Substitution of the LHS 2-hydroxyphenyl group with polar-substituted cyclohexene-based probes resulted in two AMPK agonists, MSG010 and MSG011, which did not display α2-selectivity when screened against a panel of AMPK complexes. By radiolabel kinase assay, MSG010 and MSG011 activated α2β2γ1 AMPK with one order of magnitude greater potency than the pan AMPK activator MK-8722. A crystal structure of MSG011 complexed to AMPK α2β1γ1 revealed a similar binding mode to SC4 and the potential importance of an interaction between the SC4 2-hydroxyl group and α2-Lys31 for directing α2-selectivity. MSG011 induced robust AMPK signalling in mouse primary hepatocytes and commonly used cell lines, and in most cases this occurred in the absence of changes in phosphorylation of the kinase activation loop residue α-Thr172, a classical marker of AMP-induced AMPK activity. These findings will guide future design of α2β2-selective AMPK activators, that we hypothesise may avoid off-target complications associated with indiscriminate activation of AMPK throughout the body.
  • Item
    Thumbnail Image
    Reaction hijacking of tyrosine tRNA synthetase as a new whole-of-life-cycle antimalarial strategy
    Xie, SC ; Metcalfe, RD ; Dunn, E ; Morton, CJ ; Huang, S-C ; Puhalovich, T ; Du, Y ; Wittlin, S ; Nie, S ; Luth, MR ; Ma, L ; Kim, M-S ; Pasaje, CFA ; Kumpornsin, K ; Giannangelo, C ; Houghton, FJ ; Churchyard, A ; Famodimu, MT ; Barry, DC ; Gillett, DL ; Dey, S ; Kosasih, CC ; Newman, W ; Niles, JC ; Lee, MCS ; Baum, J ; Ottilie, S ; Winzeler, EA ; Creek, DJ ; Williamson, N ; Parker, MW ; Brand, S ; Langston, SP ; Dick, LR ; Griffin, MDW ; Gould, AE ; Tilley, L (AMER ASSOC ADVANCEMENT SCIENCE, 2022-06-03)
    Aminoacyl transfer RNA (tRNA) synthetases (aaRSs) are attractive drug targets, and we present class I and II aaRSs as previously unrecognized targets for adenosine 5'-monophosphate-mimicking nucleoside sulfamates. The target enzyme catalyzes the formation of an inhibitory amino acid-sulfamate conjugate through a reaction-hijacking mechanism. We identified adenosine 5'-sulfamate as a broad-specificity compound that hijacks a range of aaRSs and ML901 as a specific reagent a specific reagent that hijacks a single aaRS in the malaria parasite Plasmodium falciparum, namely tyrosine RS (PfYRS). ML901 exerts whole-life-cycle-killing activity with low nanomolar potency and single-dose efficacy in a mouse model of malaria. X-ray crystallographic studies of plasmodium and human YRSs reveal differential flexibility of a loop over the catalytic site that underpins differential susceptibility to reaction hijacking by ML901.
  • Item
    Thumbnail Image
    Structure of native HIV-1 cores and their interactions with IP6 and CypA
    Ni, T ; Zhu, Y ; Yang, Z ; Xu, C ; Chaban, Y ; Nesterova, T ; Ning, J ; Bocking, T ; Parker, MW ; Monnie, C ; Ahn, J ; Perilla, JR ; Zhang, P (AMER ASSOC ADVANCEMENT SCIENCE, 2021-11-01)
    The viral capsid plays essential roles in HIV replication and is a major platform engaging host factors. To overcome challenges in study native capsid structure, we used the perfringolysin O to perforate the membrane of HIV-1 particles, thus allowing host proteins and small molecules to access the native capsid while improving cryo–electron microscopy image quality. Using cryo–electron tomography and subtomogram averaging, we determined the structures of native capsomers in the presence and absence of inositol hexakisphosphate (IP6) and cyclophilin A and constructed an all-atom model of a complete HIV-1 capsid. Our structures reveal two IP6 binding sites and modes of cyclophilin A interactions. Free energy calculations substantiate the two binding sites at R18 and K25 and further show a prohibitive energy barrier for IP6 to pass through the pentamer. Our results demonstrate that perfringolysin O perforation is a valuable tool for structural analyses of enveloped virus capsids and interactions with host cell factors.
  • Item
    Thumbnail Image
    The structure of the extracellular domains of human interleukin 11? receptor reveals mechanisms of cytokine engagement
    Metcalfe, RD ; Aizel, K ; Zlatic, CO ; Nguyen, PM ; Morton, CJ ; Lio, DS-S ; Cheng, H-C ; Dobson, RCJ ; Parker, MW ; Gooley, PR ; Putoczki, TL ; Griffin, MDW (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2020-06-12)
    Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the β-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.
  • Item
    Thumbnail Image
    Design of proteasome inhibitors with oral efficacy in vivo against Plasmodium falciparum and selectivity over the human proteasome
    Xie, SC ; Metcalfe, RD ; Mizutani, H ; Puhalovich, T ; Hanssen, E ; Morton, CJ ; Du, Y ; Dogovski, C ; Huang, S-C ; Ciavarri, J ; Hales, P ; Griffin, RJ ; Cohen, LH ; Chuang, B-C ; Wittlin, S ; Deni, I ; Yeo, T ; Ward, KE ; Barry, DC ; Liu, B ; Gillett, DL ; Crespo-Fernandez, BF ; Ottilie, S ; Mittal, N ; Churchyard, A ; Ferguson, D ; Aguiar, ACC ; Guido, RVC ; Baum, J ; Hanson, KK ; Winzeler, EA ; Gamo, F-J ; Fidock, DA ; Baud, D ; Parker, MW ; Brand, S ; Dick, LR ; Griffin, MDW ; Gould, AE ; Tilley, L (NATL ACAD SCIENCES, 2021-09-28)
    The Plasmodium falciparum proteasome is a potential antimalarial drug target. We have identified a series of amino-amide boronates that are potent and specific inhibitors of the P. falciparum 20S proteasome (Pf20S) β5 active site and that exhibit fast-acting antimalarial activity. They selectively inhibit the growth of P. falciparum compared with a human cell line and exhibit high potency against field isolates of P. falciparum and Plasmodium vivax They have a low propensity for development of resistance and possess liver stage and transmission-blocking activity. Exemplar compounds, MPI-5 and MPI-13, show potent activity against P. falciparum infections in a SCID mouse model with an oral dosing regimen that is well tolerated. We show that MPI-5 binds more strongly to Pf20S than to human constitutive 20S (Hs20Sc). Comparison of the cryo-electron microscopy (EM) structures of Pf20S and Hs20Sc in complex with MPI-5 and Pf20S in complex with the clinically used anti-cancer agent, bortezomib, reveal differences in binding modes that help to explain the selectivity. Together, this work provides insights into the 20S proteasome in P. falciparum, underpinning the design of potent and selective antimalarial proteasome inhibitors.
  • Item
    Thumbnail Image
    An ALYREF-MYCN coactivator complex drives neuroblastoma tumorigenesis through effects on USP3 and MYCN stability
    Nagy, Z ; Seneviratne, JA ; Kanikevich, M ; Chang, W ; Mayoh, C ; Venkat, P ; Du, Y ; Jiang, C ; Salib, A ; Koach, J ; Carter, DR ; Mittra, R ; Liu, T ; Parker, MW ; Cheung, BB ; Marshall, GM (NATURE RESEARCH, 2021-03-25)
    To achieve the very high oncoprotein levels required to drive the malignant state cancer cells utilise the ubiquitin proteasome system to upregulate transcription factor levels. Here our analyses identify ALYREF, expressed from the most common genetic copy number variation in neuroblastoma, chromosome 17q21-ter gain as a key regulator of MYCN protein turnover. We show strong co-operativity between ALYREF and MYCN from transgenic models of neuroblastoma in vitro and in vivo. The two proteins form a nuclear coactivator complex which stimulates transcription of the ubiquitin specific peptidase 3, USP3. We show that increased USP3 levels reduce K-48- and K-63-linked ubiquitination of MYCN, thus driving up MYCN protein stability. In the MYCN-ALYREF-USP3 signal, ALYREF is required for MYCN effects on the malignant phenotype and that of USP3 on MYCN stability. This data defines a MYCN oncoprotein dependency state which provides a rationale for future pharmacological studies.
  • Item
    Thumbnail Image
    A novel combination therapy targeting ubiquitin-specific protease 5 in MYCN-driven neuroblastoma
    Cheung, BB ; Kleynhans, A ; Mittra, R ; Kim, PY ; Holien, JK ; Nagy, Z ; Ciampa, OC ; Seneviratne, JA ; Mayoh, C ; Raipuria, M ; Gadde, S ; Massudi, H ; Wong, IPL ; Tan, O ; Gong, A ; Suryano, A ; Diakiw, SM ; Liu, B ; Arndt, GM ; Liu, T ; Kumar, N ; Sangfelt, O ; Zhu, S ; Norris, MD ; Haber, M ; Carter, DR ; Parker, MW ; Marshall, GM (SPRINGERNATURE, 2021-03-03)
    Histone deacetylase (HDAC) inhibitors are effective in MYCN-driven cancers, because of a unique need for HDAC recruitment by the MYCN oncogenic signal. However, HDAC inhibitors are much more effective in combination with other anti-cancer agents. To identify novel compounds which act synergistically with HDAC inhibitor, such as suberanoyl hydroxamic acid (SAHA), we performed a cell-based, high-throughput drug screen of 10,560 small molecule compounds from a drug-like diversity library and identified a small molecule compound (SE486-11) which synergistically enhanced the cytotoxic effects of SAHA. Effects of drug combinations on cell viability, proliferation, apoptosis and colony forming were assessed in a panel of neuroblastoma cell lines. Treatment with SAHA and SE486-11 increased MYCN ubiquitination and degradation, and markedly inhibited tumorigenesis in neuroblastoma xenografts, and, MYCN transgenic zebrafish and mice. The combination reduced ubiquitin-specific protease 5 (USP5) levels and increased unanchored polyubiquitin chains. Overexpression of USP5 rescued neuroblastoma cells from the cytopathic effects of the combination and reduced unanchored polyubiquitin, suggesting USP5 is a therapeutic target of the combination. SAHA and SE486-11 directly bound to USP5 and the drug combination exhibited a 100-fold higher binding to USP5 than individual drugs alone in microscale thermophoresis assays. MYCN bound to the USP5 promoter and induced USP5 gene expression suggesting that USP5 and MYCN expression created a forward positive feedback loop in neuroblastoma cells. Thus, USP5 acts as an oncogenic cofactor with MYCN in neuroblastoma and the novel combination of HDAC inhibitor with SE486-11 represents a novel therapeutic approach for the treatment of MYCN-driven neuroblastoma.
  • Item
    Thumbnail Image
    A DARPin targeting activated Mac-1 is a novel diagnostic tool and potential anti-inflammatory agent in myocarditis, sepsis and myocardial infarction
    Siegel, PM ; Bojti, I ; Bassler, N ; Holien, J ; Flierl, U ; Wang, X ; Waggershauser, P ; Tonnar, X ; Vedecnik, C ; Lamprecht, C ; Stankova, I ; Li, T ; Helbing, T ; Wolf, D ; Anto-Michel, N ; Mitre, LS ; Ehrlich, J ; Orlean, L ; Bender, I ; Przewosnik, A ; Mauler, M ; Hollederer, L ; Moser, M ; Bode, C ; Parker, MW ; Peter, K ; Diehl, P (SPRINGER HEIDELBERG, 2021-03-15)
    The monocyte β2-integrin Mac-1 is crucial for leukocyte-endothelium interaction, rendering it an attractive therapeutic target for acute and chronic inflammation. Using phage display, a Designed-Ankyrin-Repeat-Protein (DARPin) was selected as a novel binding protein targeting and blocking the αM I-domain, an activation-specific epitope of Mac-1. This DARPin, named F7, specifically binds to activated Mac-1 on mouse and human monocytes as determined by flow cytometry. Homology modelling and docking studies defined distinct interaction sites which were verified by mutagenesis. Intravital microscopy showed reduced leukocyte-endothelium adhesion in mice treated with this DARPin. Using mouse models of sepsis, myocarditis and ischaemia/reperfusion injury, we demonstrate therapeutic anti-inflammatory effects. Finally, the activated Mac-1-specific DARPin is established as a tool to detect monocyte activation in patients receiving extra-corporeal membrane oxygenation, as well as suffering from sepsis and ST-elevation myocardial infarction. The activated Mac-1-specific DARPin F7 binds preferentially to activated monocytes, detects inflammation in critically ill patients, and inhibits monocyte and neutrophil function as an efficient new anti-inflammatory agent.