Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 5 of 5
  • Item
    Thumbnail Image
    Humans lack iGb3 due to the absence of functional iGb3-synthase: Implications for NKT cell development and transplantation
    Christiansen, D ; Milland, J ; Mouhtouris, E ; Vaughan, H ; Pellicci, DG ; McConville, MJ ; Godfrey, DI ; Sandrin, MS ; Ploegh, HL (PUBLIC LIBRARY SCIENCE, 2008-07)
    The glycosphingolipid isoglobotrihexosylceramide, or isogloboside 3 (iGb3), is believed to be critical for natural killer T (NKT) cell development and self-recognition in mice and humans. Furthermore, iGb3 may represent an important obstacle in xenotransplantation, in which this lipid represents the only other form of the major xenoepitope Galalpha(1,3)Gal. The role of iGb3 in NKT cell development is controversial, particularly with one study that suggested that NKT cell development is normal in mice that were rendered deficient for the enzyme iGb3 synthase (iGb3S). We demonstrate that spliced iGb3S mRNA was not detected after extensive analysis of human tissues, and furthermore, the iGb3S gene contains several mutations that render this product nonfunctional. We directly tested the potential functional activity of human iGb3S by expressing chimeric molecules containing the catalytic domain of human iGb3S. These hybrid molecules were unable to synthesize iGb3, due to at least one amino acid substitution. We also demonstrate that purified normal human anti-Gal immunoglobulin G can bind iGb3 lipid and mediate complement lysis of transfected human cells expressing iGb3. Collectively, our data suggest that iGb3S is not expressed in humans, and even if it were expressed, this enzyme would be inactive. Consequently, iGb3 is unlikely to represent a primary natural ligand for NKT cells in humans. Furthermore, the absence of iGb3 in humans implies that it is another source of foreign Galalpha(1,3)Gal xenoantigen, with obvious significance in the field of xenotransplantation.
  • Item
    Thumbnail Image
    Chewing the fat on natural killer T cell development
    Godfrey, DI ; McConville, MJ ; Pellicci, DG (ROCKEFELLER UNIV PRESS, 2006-10-02)
    Natural killer T cells (NKT cells) are selected in the thymus by self-glycolipid antigens presented by CD1d molecules. It is currently thought that one specific component of the lysosomal processing pathway, which leads to the production of isoglobotrihexosylceramide (iGb3), is essential for normal NKT cell development. New evidence now shows that NKT cell development can be disrupted by a diverse range of mutations that interfere with different elements of the lysosomal processing and degradation of glycolipids. This suggests that lysosomal storage diseases (LSDs) in general, rather than one specific defect, can disrupt CD1d antigen presentation, leading to impaired development of NKT cells.
  • Item
    Thumbnail Image
    Expression of the Glucocorticoid Receptor from the 1A Promoter correlates with T Lymphocyte Sensitivity to Glucocrticoid-Induced Cell Death
    PURTON, JARED FRANKLIN ; MONK, JULIE ALEXANDRA ; LIDDICOAT, DOUGLAS ; KYPARISSOUDIS, KONSTANTINOS ; SAKKAL, SAMY ; RICHARDSON, SAMANTHA JANE ; GODFREY, DALE IAN ; COLE, TIMOTHY JAMES ( 2004)
  • Item
    Thumbnail Image
    Without peripheral interference, thymic deletion is mediated in a cohort of double-positive cells without classical activation
    Zhan, YF ; Purton, JF ; Godfrey, DI ; Cole, TJ ; Heath, WR ; Lew, AM (NATL ACAD SCIENCES, 2003-02-04)
    Peripheral activation can cause bystander thymocyte death by eliciting a "cytokine storm." This event complicates in vivo studies using exogenous ligand-induced models of negative selection. A stable transgenic model that selectively eliminates peripheral CD4 cells has allowed us to analyze negative selection as direct cognate events in two T cell receptor transgenic mice, OT-II and DO11. Whereas cognate peptide induced a massive deletion in double-positive (DP) cells in mice with peripheral CD4 cells, this DP deletion was modest in mice lacking peripheral CD4 cells. Using BrdUrd and annexin V staining, we found that negative selection primarily occurs in a cohort of DP cells and the absence of single-positive (SP) cells is largely caused by reduction in the cohort of DP precursors. Moreover, the fates of DP cells and SP cells after antigen exposure were vastly different. Whereas SP cells up-regulated uniformly their CD69 and CD44 levels, increased their cell size, and survived after antigen exposure, DP cells had less CD69 and CD44 up-regulation, no size change, and promptly died. Thus, negative selection represents an "abortive" activation different from activation-induced cell death of mature T cells.
  • Item
    Thumbnail Image
    Glucocorticoid receptor deficient thymic and peripheral T cells develop normally in adult mice
    Purton, JF ; Zhan, YF ; Liddicoat, DR ; Hardy, CL ; Lew, AM ; Cole, TJ ; Godfrey, DI (WILEY-V C H VERLAG GMBH, 2002-12)
    The involvement of glucocorticoid receptor (GR) signaling in T cell development is highly controversial, with several studies for and against. We have previously demonstrated that GR(-/-) mice, which usually die at birth because of impaired lung development, exhibit normal T cell development, at least in embryonic mice and in fetal thymus organ cultures. To directly investigate the role of GR signaling in adult T cell development, we analyzed the few GR(-/-) mice that occasionally survive birth, and irradiated mice reconstituted with GR(-/-) fetal liver precursors. All thymic and peripheral T cells, as well as other leukocyte lineages, developed and were maintained at normal levels. Anti-CD3-induced cell death of thymocytes in vitro, T cell repertoire heterogeneity and T cell proliferation in response to anti-CD3 stimulation were normal in the absence of GR signaling. Finally, we show that metyrapone, an inhibitor of glucocorticoid synthesis (commonly used to demonstrate a role for glucocorticoids in T cell development), impaired thymocyte development regardless of GR genotype indicating that this reagent inhibits thymocyte development in a glucocorticoid-independent fashion. These data demonstrate that GR signaling is not required for either normal T cell development or peripheral maintenance in embryonic or adult mice.