Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 244
  • Item
    No Preview Available
    Mof (MYST1 or KAT8) is essential for progression of embryonic development past the blastocyst stage and required for normal chromatin architecture
    Thomas, T ; Dixon, MP ; Kueh, AJ ; Voss, AK (AMER SOC MICROBIOLOGY, 2008-08)
    Acetylation of histone tails is a hallmark of transcriptionally active chromatin. Mof (males absent on the first; also called MYST1 or KAT8) is a member of the MYST family of histone acetyltransferases and was originally discovered as an essential component of the X chromosome dosage compensation system in Drosophila. In order to examine the role of Mof in mammals in vivo, we generated mice carrying a null mutation of the Mof gene. All Mof-deficient embryos fail to develop beyond the expanded blastocyst stage and die at implantation in vivo. Mof-deficient cell lines cannot be derived from Mof(-/-) embryos in vitro. Mof(-/-) embryos fail to acetylate histone 4 lysine 16 (H4K16) but have normal acetylation of other N-terminal histone lysine residues. Mof(-/-) cell nuclei exhibit abnormal chromatin aggregation preceding activation of caspase 3 and DNA fragmentation. We conclude that Mof is functionally nonredundant with the closely related MYST histone acetyltransferase Tip60. Our results show that Mof performs a different role in mammals from that in flies at the organism level, although the molecular function is conserved. We demonstrate that Mof is required specifically for the maintenance of H4K16 acetylation and normal chromatin architecture of all cells of early male and female embryos.
  • Item
    No Preview Available
    Tissue hyperplasia and enhanced T-cell signalling via ZAP-70 in c-Cbl-deficient mice
    Murphy, MA ; Schnall, RG ; Venter, DJ ; Barnett, L ; Bertoncello, I ; Thien, CBF ; Langdon, WY ; Bowtell, DDL (AMER SOC MICROBIOLOGY, 1998-08)
    The c-Cbl protein is tyrosine phosphorylated and forms complexes with a wide range of signalling partners in response to various growth factors. How c-Cbl interacts with proteins, such as Grb2, phosphatidylinositol 3-kinase, and phosphorylated receptors, is well understood, but its role in these complexes is unclear. Recently, the Caenorhabditis elegans Cbl homolog, Sli-1, was shown to act as a negative regulator of epidermal growth factor receptor signalling. This finding forced a reassessment of the role of Cbl proteins and highlighted the desirability of testing genetically whether c-Cbl acts as a negative regulator of mammalian signalling. Here we investigate the role of c-Cbl in development and homeostasis in mice by targeted disruption of the c-Cbl locus. c-Cbl-deficient mice were viable, fertile, and outwardly normal in appearance. Bone development and remodelling also appeared normal in c-Cbl mutants, despite a previously reported requirement for c-Cbl in osteoclast function. However, consistent with a high level of expression of c-Cbl in the hemopoietic compartment, c-Cbl-deficient mice displayed marked changes in their hemopoietic profiles, including altered T-cell receptor expression, lymphoid hyperplasia, and primary splenic extramedullary hemopoiesis. The mammary fat pads of mutant female mice also showed increased ductal density and branching compared to those of their wild-type littermates, indicating an unanticipated role for c-Cbl in regulating mammary growth. Collectively, the hyperplastic histological changes seen in c-Cbl mutant mice are indicative of a normal role for c-Cbl in negatively regulating signalling events that control cell growth. Consistent with this view, we observed greatly increased intracellular protein tyrosine phosphorylation in thymocytes following CD3epsilon cross-linking. In particular, phosphorylation of ZAP-70 kinase in thymocytes was uncoupled from a requirement for CD4-mediated Lck activation. This study provides the first biochemical characterization of any organism that is deficient in a member of this unique protein family. Our findings demonstrate critical roles for c-Cbl in hemopoiesis and in controlling cellular proliferation and signalling by the Syk/ZAP-70 family of protein kinases.
  • Item
    No Preview Available
    The yeast inositol polyphosphate 5-phosphatases Inp52p and Inp53p translocate to actin patches following hyperosmotic stress: Mechanism for regulating phosphatidylinositol 4,5-bisphosphate at plasma membrane invaginations
    Ooms, LM ; McColl, BK ; Wiradjaja, F ; Wijayaratnam, APW ; Gleeson, P ; Gething, MJ ; Sambrook, J ; Mitchell, CA (AMER SOC MICROBIOLOGY, 2000-12)
    The Saccharomyces cerevisiae inositol polyphosphate 5-phosphatases (Inp51p, Inp52p, and Inp53p) each contain an N-terminal Sac1 domain, followed by a 5-phosphatase domain and a C-terminal proline-rich domain. Disruption of any two of these 5-phosphatases results in abnormal vacuolar and plasma membrane morphology. We have cloned and characterized the Sac1-containing 5-phosphatases Inp52p and Inp53p. Purified recombinant Inp52p lacking the Sac1 domain hydrolyzed phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P(2)] and PtdIns(3, 5)P(2). Inp52p and Inp53p were expressed in yeast as N-terminal fusion proteins with green fluorescent protein (GFP). In resting cells recombinant GFP-tagged 5-phosphatases were expressed diffusely throughout the cell but were excluded from the nucleus. Following hyperosmotic stress the GFP-tagged 5-phosphatases rapidly and transiently associated with actin patches, independent of actin, in both the mother and daughter cells of budding yeast as demonstrated by colocalization with rhodamine phalloidin. Both the Sac1 domain and proline-rich domains were able to independently mediate translocation of Inp52p to actin patches, following hyperosmotic stress, while the Inp53p proline-rich domain alone was sufficient for stress-mediated localization. Overexpression of Inp52p or Inp53p, but not catalytically inactive Inp52p, which lacked PtdIns(4,5)P(2) 5-phosphatase activity, resulted in a dramatic reduction in the repolarization time of actin patches following hyperosmotic stress. We propose that the osmotic-stress-induced translocation of Inp52p and Inp53p results in the localized regulation of PtdIns(3,5)P(2) and PtdIns(4,5)P(2) at actin patches and associated plasma membrane invaginations. This may provide a mechanism for regulating actin polymerization and cell growth as an acute adaptive response to hyperosmotic stress.
  • Item
    No Preview Available
    Impaired cardiac contractility response to hemodynamic stress in S100A1-deficient mice
    Du, XJ ; Cole, TJ ; Tenis, N ; Gao, XM ; Köntgen, F ; Kemp, BE ; Heierhorst, J (AMER SOC MICROBIOLOGY, 2002-04)
    Ca(2+) signaling plays a central role in cardiac contractility and adaptation to increased hemodynamic demand. We have generated mice with a targeted deletion of the S100A1 gene coding for the major cardiac isoform of the large multigenic S100 family of EF hand Ca(2+)-binding proteins. S100A1(-/-) mice have normal cardiac function under baseline conditions but have significantly reduced contraction rate and relaxation rate responses to beta-adrenergic stimulation that are associated with a reduced Ca(2+) sensitivity. In S100A1(-/-) mice, basal left-ventricular contractility deteriorated following 3-week pressure overload by thoracic aorta constriction despite a normal adaptive hypertrophy. Surprisingly, heterozygotes also had an impaired response to acute beta-adrenergic stimulation but maintained normal contractility in response to chronic pressure overload that coincided with S100A1 upregulation to wild-type levels. In contrast to other genetic models with impaired cardiac contractility, loss of S100A1 did not lead to cardiac hypertrophy or dilation in aged mice. The data demonstrate that high S100A1 protein levels are essential for the cardiac reserve and adaptation to acute and chronic hemodynamic stress in vivo.
  • Item
    Thumbnail Image
    The Minimal Active Structure of Human Relaxin-2
    Hossain, MA ; Rosengren, KJ ; Samuel, CS ; Shabanpoor, F ; Chan, LJ ; Bathgate, RAD ; Wade, JD (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-10-28)
    H2 relaxin is a peptide hormone associated with a number of therapeutically relevant physiological effects, including regulation of collagen metabolism and multiple vascular control pathways. It is currently in phase III clinical trials for the treatment of acute heart failure due to its ability to induce vasodilation and influence renal function. It comprises 53 amino acids and is characterized by two separate polypeptide chains (A-B) that are cross-linked by three disulfide bonds. This size and complex structure represents a considerable challenge for the chemical synthesis of H2 relaxin, a major limiting factor for the exploration of modifications and derivatizations of this peptide, to optimize effect and drug-like characteristics. To address this issue, we describe the solid phase peptide synthesis and structural and functional evaluation of 24 analogues of H2 relaxin with truncations at the termini of its peptide chains. We show that it is possible to significantly truncate both the N and C termini of the B-chain while still retaining potent biological activity. This suggests that these regions are not critical for interactions with the H2 relaxin receptor, RXFP1. In contrast, truncations do reduce the activity of H2 relaxin for the related receptor RXFP2 by improving RXFP1 selectivity. In addition to new mechanistic insights into the function of H2 relaxin, this study identifies a critical active core with 38 amino acids. This minimized core shows similar antifibrotic activity as native H2 relaxin when tested in human BJ3 cells and thus represents an attractive receptor-selective lead for the development of novel relaxin therapeutics.
  • Item
    Thumbnail Image
    Opposing Actions of Extracellular Signal-regulated Kinase (ERK) and Signal Transducer and Activator of Transcription 3 (STAT3) in Regulating Microtubule Stabilization during Cardiac Hypertrophy
    Ng, DCH ; Ng, IHW ; Yeap, YYC ; Badrian, B ; Tsoutsman, T ; McMullen, JR ; Semsarian, C ; Bogoyevitch, MA (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-01-14)
    Excessive proliferation and stabilization of the microtubule (MT) array in cardiac myocytes can accompany pathological cardiac hypertrophy, but the molecular control of these changes remains poorly characterized. In this study, we examined MT stabilization in two independent murine models of heart failure and revealed increases in the levels of post-translationally modified stable MTs, which were closely associated with STAT3 activation. To explore the molecular signaling events contributing to control of the cardiac MT network, we stimulated cardiac myocytes with an α-adrenergic agonist phenylephrine (PE), and observed increased tubulin content without changes in detyrosinated (glu-tubulin) stable MTs. In contrast, the hypertrophic interleukin-6 (IL6) family cytokines increased both the glu-tubulin content and glu-MT density. When we examined a role for ERK in regulating cardiac MTs, we showed that the MEK/ERK-inhibitor U0126 increased glu-MT density in either control cardiac myocytes or following exposure to hypertrophic agents. Conversely, expression of an activated MEK1 mutant reduced glu-tubulin levels. Thus, ERK signaling antagonizes stabilization of the cardiac MT array. In contrast, inhibiting either JAK2 with AG490, or STAT3 signaling with Stattic or siRNA knockdown, blocked cytokine-stimulated increases in glu-MT density. Furthermore, the expression of a constitutively active STAT3 mutant triggered increased glu-MT density in the absence of hypertrophic stimulation. Thus, STAT3 activation contributes substantially to cytokine-stimulated glu-MT changes. Taken together, our results highlight the opposing actions of STAT3 and ERK pathways in the regulation of MT changes associated with cardiac myocyte hypertrophy.
  • Item
    Thumbnail Image
    Conservation of a Glycine-rich Region in the Prion Protein Is Required for Uptake of Prion Infectivity
    Harrison, CF ; Lawson, VA ; Coleman, BM ; Kim, Y-S ; Masters, CL ; Cappai, R ; Barnham, KJ ; Hill, AF (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2010-06-25)
    Prion diseases are associated with the misfolding of the endogenously expressed prion protein (designated PrP(C)) into an abnormal isoform (PrP(Sc)) that has infectious properties. The hydrophobic domain of PrP(C) is highly conserved and contains a series of glycine residues that show perfect conservation among all species, strongly suggesting it has functional and evolutionary significance. These glycine residues appear to form repeats of the GXXXG protein-protein interaction motif (two glycines separated by any three residues); the retention of these residues is significant and presumably relates to the functionality of PrP(C). Mutagenesis studies demonstrate that minor alterations to this highly conserved region of PrP(C) drastically affect the ability of cells to uptake and replicate prion infection in both cell and animal bioassay. The localization and processing of mutant PrP(C) are not affected, although in vitro and in vivo studies demonstrate that this region is not essential for interaction with PrP(Sc), suggesting these residues provide conformational flexibility. These data suggest that this region of PrP(C) is critical in the misfolding process and could serve as a novel, species-independent target for prion disease therapeutics.
  • Item
    Thumbnail Image
    Anionic Phospholipid Interactions of the Prion Protein N Terminus Are Minimally Perturbing and Not Driven Solely by the Octapeptide Repeat Domain
    Boland, MP ; Hatty, CR ; Separovic, F ; Hill, AF ; Tew, DJ ; Barnham, KJ ; Haigh, CL ; James, M ; Masters, CL ; Collins, SJ (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2010-10-15)
    Although the N terminus of the prion protein (PrP(C)) has been shown to directly associate with lipid membranes, the precise determinants, biophysical basis, and functional implications of such binding, particularly in relation to endogenously occurring fragments, are unresolved. To better understand these issues, we studied a range of synthetic peptides: specifically those equating to the N1 (residues 23-110) and N2 (23-89) fragments derived from constitutive processing of PrP(C) and including those representing arbitrarily defined component domains of the N terminus of mouse prion protein. Utilizing more physiologically relevant large unilamellar vesicles, fluorescence studies at synaptosomal pH (7.4) showed absent binding of all peptides to lipids containing the zwitterionic headgroup phosphatidylcholine and mixtures containing the anionic headgroups phosphatidylglycerol or phosphatidylserine. At pH 5, typical of early endosomes, quartz crystal microbalance with dissipation showed the highest affinity binding occurred with N1 and N2, selective for anionic lipid species. Of particular note, the absence of binding by individual peptides representing component domains underscored the importance of the combination of the octapeptide repeat and the N-terminal polybasic regions for effective membrane interaction. In addition, using quartz crystal microbalance with dissipation and solid-state NMR, we characterized for the first time that both N1 and N2 deeply insert into the lipid bilayer with minimal disruption. Potential functional implications related to cellular stress responses are discussed.
  • Item
    Thumbnail Image
    c-Jun N-terminal Kinase Phosphorylation of Stathmin Confers Protection against Cellular Stress
    Ng, DCH ; Zhao, TT ; Yeap, YYC ; Ngoei, KR ; Bogoyevitch, MA (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2010-09-10)
    The cell stress response encompasses the range of intracellular events required for adaptation to stimuli detrimental to cell survival. Although the c-Jun N-terminal kinase (JNK) is a stress-activated kinase that can promote either cell survival or death in response to detrimental stimuli, the JNK-regulated mechanisms involved in survival are not fully characterized. Here we show that in response to hyperosmotic stress, JNK phosphorylates a key cytoplasmic microtubule regulatory protein, stathmin (STMN), on conserved Ser-25 and Ser-38 residues. In in vitro biochemical studies, we identified STMN Ser-38 as the critical residue required for efficient phosphorylation by JNK and identified a novel kinase interaction domain in STMN required for recognition by JNK. We revealed that JNK was required for microtubule stabilization in response to hyperosmotic stress. Importantly, we also demonstrated a novel cytoprotective function for STMN, as the knockdown of STMN levels by siRNA was sufficient to augment viability in response to hyperosmotic stress. Our findings show that JNK targeting of STMN represents a novel stress-activated cytoprotective mechanism involving microtubule network changes.
  • Item
    Thumbnail Image
    Aromatic residues in the C-terminal helix of human apoC-I mediate phospholipid interactions and particle morphology
    James, PF ; Dogovski, C ; Dobson, RCJ ; Bailey, MF ; Goldie, KN ; Karas, JA ; Scanlon, DB ; O'Hair, RAJ ; Perugini, MA (ELSEVIER, 2009-07)
    Human apolipoprotein C-I (apoC-I) is an exchangeable apolipoprotein that binds to lipoprotein particles in vivo. In this study, we employed a LC-MS/MS assay to demonstrate that residues 38-51 of apoC-I are significantly protected from proteolysis in the presence of 1,2-dimyristoyl-3-sn-glycero-phosphocholine (DMPC). This suggests that the key lipid-binding determinants of apoC-I are located in the C-terminal region, which includes F42 and F46. To test this, we generated site-directed mutants substituting F42 and F46 for glycine or alanine. In contrast to wild-type apoC-I (WT), which binds DMPC vesicles with an apparent Kd [Kd(app)] of 0.89 microM, apoC-I(F42A) and apoC-I(F46A) possess 2-fold weaker affinities for DMPC with Kd(app) of 1.52 microM and 1.58 microM, respectively. However, apoC-I(F46G), apoC-I(F42A/F46A), apoC-I(F42G), and apoC-I(F42G/F46G) bind significantly weaker to DMPC with Kd(app) of 2.24 microM, 3.07 microM, 4.24 microM, and 10.1 microM, respectively. Sedimentation velocity studies subsequently show that the protein/DMPC complexes formed by these apoC-I mutants sediment at 6.5S, 6.7S, 6.5S, and 8.0S, respectively. This is compared with 5.0S for WT apoC-I, suggesting the shape of the particles was different. Transmission electron microscopy confirmed this assertion, demonstrating that WT forms discoidal complexes with a length-to-width ratio of 2.57, compared with 1.92, 2.01, 2.16, and 1.75 for apoC-I(F42G), apoC-I(F46G), apoC-I(F42A/F46A), and apoC-I(F42G/F46G), respectively. Our study demonstrates that the C-terminal amphipathic alpha-helix of human apoC-I contains the major lipid-binding determinants, including important aromatic residues F42 and F46, which we show play a critical role in stabilizing the structure of apoC-I, mediating phospholipid interactions, and promoting discoidal particle morphology.