Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 17
  • Item
    Thumbnail Image
    Evidence That Intracellular Stages of Leishmania major Utilize Amino Sugars as a Major Carbon Source
    Naderer, T ; Heng, J ; McConville, MJ ; Beverley, SM (PUBLIC LIBRARY SCIENCE, 2010-12)
    Intracellular parasites, such as Leishmania spp, must acquire suitable carbon sources from the host cell in order to replicate. Here we present evidence that intracellular amastigote stages of Leishmania exploit amino sugars in the phagolysosome of mammalian macrophages as a source of carbon and energy. L. major parasites are capable of using N-acetylglucosamine and glucosamine as primarily carbon sources and contain key enzymes required for conversion of these sugars to fructose-6-phosphate. The last step in this pathway is catalyzed by glucosamine-6-phosphate deaminase (GND), which was targeted to glycosomes via a canonical C-terminal targeting signal when expressed as a GFP fusion protein. Mutant parasites lacking GND were unable to grow in medium containing amino sugars as sole carbohydrate source and rapidly lost viability, concomitant with the hyper-accumulation of hexosamine-phosphates. Expression of native GND, but not a cytosolic form of GND, in Δgnd parasites restored hexosamine-dependent growth, indicating that toxicity is due to depletion of glycosomal pools of ATP. Non-lethal increases in hexosamine phosphate levels in both Δgnd and wild type parasites was associated with a defect in promastigote metacyclogenesis, suggesting that hexosamine phosphate levels may influence parasite differentiation. Promastigote and amastigote stages of the Δgnd mutant were unable to replicate within macrophages and were either completely cleared or exhibited reduced lesion development in highly susceptible Balb/c mice. Our results suggest that hexosamines are a major class of sugars in the macrophage phagolysosome and that catabolism of scavenged amino sugars is required to sustain essential metabolic pathways and prevent hexosamine toxicity.
  • Item
    Thumbnail Image
    Systems biology: the next frontier for bioinformatics.
    Likić, VA ; McConville, MJ ; Lithgow, T ; Bacic, A (Hindawi Limited, 2010)
    Biochemical systems biology augments more traditional disciplines, such as genomics, biochemistry and molecular biology, by championing (i) mathematical and computational modeling; (ii) the application of traditional engineering practices in the analysis of biochemical systems; and in the past decade increasingly (iii) the use of near-comprehensive data sets derived from 'omics platform technologies, in particular "downstream" technologies relative to genome sequencing, including transcriptomics, proteomics and metabolomics. The future progress in understanding biological principles will increasingly depend on the development of temporal and spatial analytical techniques that will provide high-resolution data for systems analyses. To date, particularly successful were strategies involving (a) quantitative measurements of cellular components at the mRNA, protein and metabolite levels, as well as in vivo metabolic reaction rates, (b) development of mathematical models that integrate biochemical knowledge with the information generated by high-throughput experiments, and (c) applications to microbial organisms. The inevitable role bioinformatics plays in modern systems biology puts mathematical and computational sciences as an equal partner to analytical and experimental biology. Furthermore, mathematical and computational models are expected to become increasingly prevalent representations of our knowledge about specific biochemical systems.
  • Item
    Thumbnail Image
    Identification of Plant-like Galactolipids in Chromera velia, a Photosynthetic Relative of Malaria Parasites
    Botte, CY ; Yamaryo-Botte, Y ; Janouskovec, J ; Rupasinghe, T ; Keeling, PJ ; Crellin, P ; Coppel, RL ; Marechal, E ; McConville, MJ ; McFadden, GI (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2011-08-26)
    Apicomplexa are protist parasites that include Plasmodium spp., the causative agents of malaria, and Toxoplasma gondii, responsible for toxoplasmosis. Most Apicomplexa possess a relict plastid, the apicoplast, which was acquired by secondary endosymbiosis of a red alga. Despite being nonphotosynthetic, the apicoplast is otherwise metabolically similar to algal and plant plastids and is essential for parasite survival. Previous studies of Toxoplasma gondii identified membrane lipids with some structural features of plastid galactolipids, the major plastid lipid class. However, direct evidence for the plant-like enzymes responsible for galactolipid synthesis in Apicomplexan parasites has not been obtained. Chromera velia is an Apicomplexan relative recently discovered in Australian corals. C. velia retains a photosynthetic plastid, providing a unique model to study the evolution of the apicoplast. Here, we report the unambiguous presence of plant-like monogalactosyldiacylglycerol and digalactosyldiacylglycerol in C. velia and localize digalactosyldiacylglycerol to the plastid. We also provide evidence for a plant-like biosynthesis pathway and identify candidate galactosyltranferases responsible for galactolipid synthesis. Our study provides new insights in the evolution of these important enzymes in plastid-containing eukaryotes and will help reconstruct the evolution of glycerolipid metabolism in important parasites such as Plasmodium and Toxoplasma.
  • Item
    Thumbnail Image
    STAGE-SPECIFIC BINDING OF LEISHMANIA-DONOVANI TO THE SAND FLY VECTOR MIDGUT IS REGULATED BY CONFORMATIONAL-CHANGES IN THE ABUNDANT SURFACE LIPOPHOSPHOGLYCAN
    SACKS, DL ; PIMENTA, PFP ; MCCONVILLE, MJ ; SCHNEIDER, P ; TURCO, SJ (ROCKEFELLER UNIV PRESS, 1995-02-01)
    The life cycle of Leishmania parasites within the sand fly vector includes the development of extracellular promastigotes from a noninfective, procyclic stage into an infective, metacyclic stage that is uniquely adapted for transmission by the fly and survival in the vertebrate host. These adaptations were explored in the context of the structure and function of the abundant surface lipophosphoglycan (LPG) on Leishmania donovani promastigotes. During metacyclogenesis, the salient structural feature of L. donovani LPG is conserved, involving expression of a phosphoglycan chain made up of unsubstituted disaccharide-phosphate repeats. Two important developmental modifications were also observed. First, the size of the molecule is substantially increased because of a twofold increase in the number of phosphorylated disaccharide repeat units expressed. Second, there is a concomitant decrease in the presentation of terminally exposed sugars. This later property was indicated by the reduced accessibility of terminal galactose residues to galactose oxidase and the loss of binding by the lectins, peanut agglutinin, and concanavalin A, to metacyclic LPG in vivo and in vitro. The loss of lectin binding was not due to downregulation of the capping oligosaccharides as the same beta-linked galactose or alpha-linked mannose-terminating oligosaccharides were present in both procyclic and metacyclic promastigotes. The capping sugars on procyclic LPG were found to mediate procyclic attachment to the sand fly midgut, whereas these same sugars on metacyclic LPG failed to mediate metacyclic binding. And whereas intact metacyclic LPG did not inhibit procyclic attachment, depolymerized LPG inhibited as well as procyclic LPG, demonstrating that the ligands are normally buried. The masking of the terminal sugars is attributed to folding and clustering of the extended phosphoglycan chains, which form densely distributed particulate structures visible on fracture-flip preparations of the metacyclic surface. The exposure and subsequent masking of the terminal capping sugars explains the stage specificity of promastigote attachment to and release from the vector midgut, which are key events in the development of transmissible infections in the fly.
  • Item
    Thumbnail Image
    LeishCyc: a biochemical pathways database for Leishmania major
    Doyle, MA ; MacRae, JI ; De Souza, DP ; Saunders, EC ; McConville, MJ ; Likic, VA (BMC, 2009-06-05)
    BACKGROUND: Leishmania spp. are sandfly transmitted protozoan parasites that cause a spectrum of diseases in more than 12 million people worldwide. Much research is now focusing on how these parasites adapt to the distinct nutrient environments they encounter in the digestive tract of the sandfly vector and the phagolysosome compartment of mammalian macrophages. While data mining and annotation of the genomes of three Leishmania species has provided an initial inventory of predicted metabolic components and associated pathways, resources for integrating this information into metabolic networks and incorporating data from transcript, protein, and metabolite profiling studies is currently lacking. The development of a reliable, expertly curated, and widely available model of Leishmania metabolic networks is required to facilitate systems analysis, as well as discovery and prioritization of new drug targets for this important human pathogen. DESCRIPTION: The LeishCyc database was initially built from the genome sequence of Leishmania major (v5.2), based on the annotation published by the Wellcome Trust Sanger Institute. LeishCyc was manually curated to remove errors, correct automated predictions, and add information from the literature. The ongoing curation is based on public sources, literature searches, and our own experimental and bioinformatics studies. In a number of instances we have improved on the original genome annotation, and, in some ambiguous cases, collected relevant information from the literature in order to help clarify gene or protein annotation in the future. All genes in LeishCyc are linked to the corresponding entry in GeneDB (Wellcome Trust Sanger Institute). CONCLUSION: The LeishCyc database describes Leishmania major genes, gene products, metabolites, their relationships and biochemical organization into metabolic pathways. LeishCyc provides a systematic approach to organizing the evolving information about Leishmania biochemical networks and is a tool for analysis, interpretation, and visualization of Leishmania Omics data (transcriptomics, proteomics, metabolomics) in the context of metabolic pathways. LeishCyc is the first such database for the Trypanosomatidae family, which includes a number of other important human parasites. Flexible query/visualization capabilities are provided by the Pathway Tools software and its Web interface. The LeishCyc database is made freely available over the Internet http://www.leishcyc.org.
  • Item
    Thumbnail Image
    Humans lack iGb3 due to the absence of functional iGb3-synthase: Implications for NKT cell development and transplantation
    Christiansen, D ; Milland, J ; Mouhtouris, E ; Vaughan, H ; Pellicci, DG ; McConville, MJ ; Godfrey, DI ; Sandrin, MS ; Ploegh, HL (PUBLIC LIBRARY SCIENCE, 2008-07)
    The glycosphingolipid isoglobotrihexosylceramide, or isogloboside 3 (iGb3), is believed to be critical for natural killer T (NKT) cell development and self-recognition in mice and humans. Furthermore, iGb3 may represent an important obstacle in xenotransplantation, in which this lipid represents the only other form of the major xenoepitope Galalpha(1,3)Gal. The role of iGb3 in NKT cell development is controversial, particularly with one study that suggested that NKT cell development is normal in mice that were rendered deficient for the enzyme iGb3 synthase (iGb3S). We demonstrate that spliced iGb3S mRNA was not detected after extensive analysis of human tissues, and furthermore, the iGb3S gene contains several mutations that render this product nonfunctional. We directly tested the potential functional activity of human iGb3S by expressing chimeric molecules containing the catalytic domain of human iGb3S. These hybrid molecules were unable to synthesize iGb3, due to at least one amino acid substitution. We also demonstrate that purified normal human anti-Gal immunoglobulin G can bind iGb3 lipid and mediate complement lysis of transfected human cells expressing iGb3. Collectively, our data suggest that iGb3S is not expressed in humans, and even if it were expressed, this enzyme would be inactive. Consequently, iGb3 is unlikely to represent a primary natural ligand for NKT cells in humans. Furthermore, the absence of iGb3 in humans implies that it is another source of foreign Galalpha(1,3)Gal xenoantigen, with obvious significance in the field of xenotransplantation.
  • Item
    Thumbnail Image
    A dynamic programming approach for the alignment of signal peaks in multiple gas chromatography-mass spectrometry experiments
    Robinson, MD ; De Souza, DP ; Keen, WW ; Saunders, EC ; McConville, MJ ; Speed, TP ; Likic, VA (BMC, 2007-10-29)
    BACKGROUND: Gas chromatography-mass spectrometry (GC-MS) is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices. Automated retention time correction is particularly important in non-targeted profiling studies. RESULTS: A new approach for matching signal peaks based on dynamic programming is presented. The proposed approach relies on both peak retention times and mass spectra. The alignment of more than two peak lists involves three steps: (1) all possible pairs of peak lists are aligned, and similarity of each pair of peak lists is estimated; (2) the guide tree is built based on the similarity between the peak lists; (3) peak lists are progressively aligned starting with the two most similar peak lists, following the guide tree until all peak lists are exhausted. When two or more experiments are performed on different sample states and each consisting of multiple replicates, peak lists within each set of replicate experiments are aligned first (within-state alignment), and subsequently the resulting alignments are aligned themselves (between-state alignment). When more than two sets of replicate experiments are present, the between-state alignment also employs the guide tree. We demonstrate the usefulness of this approach on GC-MS metabolic profiling experiments acquired on wild-type and mutant Leishmania mexicana parasites. CONCLUSION: We propose a progressive method to match signal peaks across multiple GC-MS experiments based on dynamic programming. A sensitive peak similarity function is proposed to balance peak retention time and peak mass spectra similarities. This approach can produce the optimal alignment between an arbitrary number of peak lists, and models explicitly within-state and between-state peak alignment. The accuracy of the proposed method was close to the accuracy of manually-curated peak matching, which required tens of man-hours for the analyzed data sets. The proposed approach may offer significant advantages for processing of high-throughput metabolomics data, especially when large numbers of experimental replicates and multiple sample states are analyzed.
  • Item
    Thumbnail Image
    Chewing the fat on natural killer T cell development
    Godfrey, DI ; McConville, MJ ; Pellicci, DG (ROCKEFELLER UNIV PRESS, 2006-10-02)
    Natural killer T cells (NKT cells) are selected in the thymus by self-glycolipid antigens presented by CD1d molecules. It is currently thought that one specific component of the lysosomal processing pathway, which leads to the production of isoglobotrihexosylceramide (iGb3), is essential for normal NKT cell development. New evidence now shows that NKT cell development can be disrupted by a diverse range of mutations that interfere with different elements of the lysosomal processing and degradation of glycolipids. This suggests that lysosomal storage diseases (LSDs) in general, rather than one specific defect, can disrupt CD1d antigen presentation, leading to impaired development of NKT cells.
  • Item
    Thumbnail Image
    Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase.
    DE SOUZA, DAVID PETER ; ELLIS, Miriam ; McConville, Malcolm ; NADERER, THOMAS ; Sernee, Fleur ( 2009)
  • Item
    Thumbnail Image
    Evidence that intracellular β1-2 mannan is a virulence factor in Leishmania parasites
    Ralton, JE ; Naderer, T ; Piraino, HL ; Bashtannyk, TA ; Callaghan, JM ; McConville, MJ (AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2003-10-17)
    The protozoan parasite Leishmania mexicana proliferates within macrophage phagolysosomes in the mammalian host. In this study we provide evidence that a novel class of intracellular beta1-2 mannan oligosaccharides is important for parasite survival in host macrophages. Mannan (degree of polymerization 4-40) is expressed at low levels in non-pathogenic promastigote stages but constitutes 80 and 90% of the cellular carbohydrate in the two developmental stages that infect macrophages, non-dividing promastigotes, and lesion-derived amastigotes, respectively. Mannan is catabolized when parasites are starved of glucose, suggesting a reserve function, and developmental stages having low mannan levels or L. mexicana GDPMP mutants lacking all mannose molecules are highly sensitive to glucose starvation. Environmental stresses, such as mild heat shock or the heat shock protein-90 inhibitor, geldanamycin, that trigger the differentiation of promastigotes to amastigotes, result in a 10-25-fold increase in mannan levels. Developmental stages with low mannan levels or L. mexicana mutants lacking mannan do not survive heat shock and are unable to differentiate to amastigotes or infect macrophages in vitro. In contrast, a L. mexicana mutant deficient only in components of the mannose-rich surface glycocalyx differentiates normally and infects macrophages in vitro. Collectively, these data provide strong evidence that mannan accumulation is important for parasite differentiation and survival in macrophages.