Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 54
  • Item
    Thumbnail Image
    Tight Junction Protein Claudin-2 Promotes Self-Renewal of Human Colorectal Cancer Stem-like Cells
    Paquet-Fifield, S ; Koh, SL ; Cheng, L ; Beyit, LM ; Shembrey, C ; Molck, C ; Behrenbruch, C ; Papin, M ; Gironella, M ; Guelfi, S ; Nasr, R ; Grillet, F ; Prudhomme, M ; Bourgaux, J-F ; Castells, A ; Pascussi, J-M ; Heriot, AG ; Puisieux, A ; Davis, MJ ; Pannequin, J ; Hill, AF ; Sloan, EK ; Hollande, F (American Association for Cancer Research, 2018-06-01)
    Posttreatment recurrence of colorectal cancer, the third most lethal cancer worldwide, is often driven by a subpopulation of cancer stem cells (CSC). The tight junction (TJ) protein claudin-2 is overexpressed in human colorectal cancer, where it enhances cell proliferation, colony formation, and chemoresistance in vitro. While several of these biological processes are features of the CSC phenotype, a role for claudin-2 in the regulation of these has not been identified. Here, we report that elevated claudin-2 expression in stage II/III colorectal tumors is associated with poor recurrence-free survival following 5-fluorouracil–based chemotherapy, an outcome in which CSCs play an instrumental role. In patient-derived organoids, primary cells, and cell lines, claudin-2 promoted colorectal cancer self-renewal in vitro and in multiple mouse xenograft models. Claudin-2 enhanced self-renewal of ALDHHigh CSCs and increased their proportion in colorectal cancer cell populations, limiting their differentiation and promoting the phenotypic transition of non-CSCs toward the ALDHHigh phenotype. Next-generation sequencing in ALDHHigh cells revealed that claudin-2 regulated expression of nine miRNAs known to control stem cell signaling. Among these, miR-222-3p was instrumental for the regulation of self-renewal by claudin-2, and enhancement of this self-renewal required activation of YAP, most likely upstream from miR-222-3p. Taken together, our results indicate that overexpression of claudin-2 promotes self-renewal within colorectal cancer stem-like cells, suggesting a potential role for this protein as a therapeutic target in colorectal cancer.
  • Item
    Thumbnail Image
    Pathogenic mechanisms of prion protein, amyloid-beta and alpha-synuclein misfolding: the prion concept and neurotoxicity of protein oligomers
    Ugalde, CL ; Finkelstein, DI ; Lawson, VA ; Hill, AF (WILEY, 2016-10-01)
    Proteinopathies represent a group of diseases characterized by the unregulated misfolding and aggregation of proteins. Accumulation of misfolded protein in the central nervous system (CNS) is associated with neurodegenerative diseases, such as the transmissible spongiform encephalopathies (or prion diseases), Alzheimer's disease, and the synucleinopathies (the most common of which is Parkinson's disease). Of these, the pathogenic mechanisms of prion diseases are particularly striking where the transmissible, causative agent of disease is the prion, or proteinaceous infectious particle. Prions are composed almost exclusively of PrPSc ; a misfolded isoform of the normal cellular protein, PrPC , which is found accumulated in the CNS in disease. Today, mounting evidence suggests other aggregating proteins, such as amyloid-β (Aβ) and α-synuclein (α-syn), proteins associated with Alzheimer's disease and synucleinopathies, respectively, share similar biophysical and biochemical properties with PrPSc that influences how they misfold, aggregate, and propagate in disease. In this regard, the definition of a 'prion' may ultimately expand to include other pathogenic proteins. Unifying knowledge of folded proteins may also reveal common mechanisms associated with other features of disease that are less understood, such as neurotoxicity. This review discusses the common features Aβ and α-syn share with PrP and neurotoxic mechanisms associated with these misfolded proteins. Several proteins are known to misfold and accumulate in the central nervous system causing a range of neurodegenerative diseases, such as Alzheimer's, Parkinson's, and the prion diseases. Prions are transmissible misfolded conformers of the prion protein, PrP, which seed further generation of infectious proteins. Similar effects have recently been observed in proteins associated with Alzheimer's disease and the synucleinopathies, leading to the proposition that the definition of a 'prion' may ultimately expand to include other pathogenic proteins. Unifying knowledge of misfolded proteins may also reveal common mechanisms associated with other features of disease that are less understood, such as neurotoxicity.
  • Item
    Thumbnail Image
    Enrichment of extracellular vesicles from human synovial fluid using size exclusion chromatography
    Foers, AD ; Chatfield, S ; Dagley, LF ; Scicluna, BJ ; Webb, AI ; Cheng, L ; Hill, AF ; Wicks, IP ; Pang, KC (TAYLOR & FRANCIS LTD, 2018-06-26)
    As a complex biological fluid, human synovial fluid (SF) presents challenges for extracellular vesicle (EV) enrichment using standard methods. In this study of human SF, a size exclusion chromatography (SEC)-based method of EV enrichment is shown to deplete contaminants that remain after standard ultracentrifugation-based enrichment methods. Specifically, considerable levels of serum albumin, the high-density lipoprotein marker, apolipoprotein A-I, fibronectin and other extracellular proteins and debris are present in EVs prepared by differential ultracentrifugation. While the addition of a sucrose density gradient purification step improved purification quality, some contamination remained. In contrast, using a SEC-based approach, SF EVs were efficiently separated from serum albumin, apolipoprotein A-I and additional contaminating proteins that co-purified with high-speed centrifugation. Finally, using high-resolution mass spectrometry analysis, we found that residual contaminants which remain after SEC, such as fibronectin and other extracellular proteins, can be successfully depleted by proteinase K. Taken together, our results highlight the limitations of ultracentrifugation-based methods of EV isolation from complex biological fluids and suggest that SEC can be used to obtain higher purity EV samples. In this way, SEC-based methods are likely to be useful for identifying EV-enriched components and improving understanding of EV function in disease.
  • Item
    Thumbnail Image
    Vesiclepedia: A Compendium for Extracellular Vesicles with Continuous Community Annotation
    Kalra, H ; Simpson, RJ ; Ji, H ; Aikawa, E ; Altevogt, P ; Askenase, P ; Bond, VC ; Borras, FE ; Breakefield, X ; Budnik, V ; Buzas, E ; Camussi, G ; Clayton, A ; Cocucci, E ; Falcon-Perez, JM ; Gabrielsson, S ; Gho, YS ; Gupta, D ; Harsha, HC ; Hendrix, A ; Hill, AF ; Inal, JM ; Jenster, G ; Kraemer-Albers, E-M ; Lim, SK ; Llorente, A ; Lotvall, J ; Marcilla, A ; Mincheva-Nilsson, L ; Nazarenko, I ; Nieuwland, R ; Nolte-'t Hoen, ENM ; Pandey, A ; Patel, T ; Piper, MG ; Pluchino, S ; Prasad, TSK ; Rajendran, L ; Raposo, G ; Record, M ; Reid, GE ; Sanchez-Madrid, F ; Schiffelers, RM ; Siljander, P ; Stensballe, A ; Stoorvogel, W ; Taylor, D ; Thery, C ; Valadi, H ; van Balkom, BWM ; Vazquez, J ; Vidal, M ; Wauben, MHM ; Yanez-Mo, M ; Zoeller, M ; Mathivanan, S (PUBLIC LIBRARY SCIENCE, 2012-12-01)
    Extracellular vesicles (EVs) are membraneous vesicles released by a variety of cells into their microenvironment. Recent studies have elucidated the role of EVs in intercellular communication, pathogenesis, drug, vaccine and gene-vector delivery, and as possible reservoirs of biomarkers. These findings have generated immense interest, along with an exponential increase in molecular data pertaining to EVs. Here, we describe Vesiclepedia, a manually curated compendium of molecular data (lipid, RNA, and protein) identified in different classes of EVs from more than 300 independent studies published over the past several years. Even though databases are indispensable resources for the scientific community, recent studies have shown that more than 50% of the databases are not regularly updated. In addition, more than 20% of the database links are inactive. To prevent such database and link decay, we have initiated a continuous community annotation project with the active involvement of EV researchers. The EV research community can set a gold standard in data sharing with Vesiclepedia, which could evolve as a primary resource for the field.
  • Item
    Thumbnail Image
    A clinical study of kuru patients with long incubation periods at the end of the epidemic in Papua New Guinea
    Collinge, J ; Whitfield, J ; McKintosh, E ; Frosh, A ; Mead, S ; Hill, AF ; Brandner, S ; Thomas, D ; Alpers, MP (ROYAL SOC, 2008-11-27)
    Kuru is so far the principal human epidemic prion disease. While its incidence has steadily declined since the cessation of its route of transmission, endocannibalism, in Papua New Guinea in the 1950s, the arrival of variant Creutzfeldt-Jakob disease (vCJD), also thought to be transmitted by dietary prion exposure, has given kuru a new global relevance. We investigated all suspected cases of kuru from July 1996 to June 2004 and identified 11 kuru patients. There were four females and seven males, with an age range of 46-63 years at the onset of disease, in marked contrast to the age and sex distribution when kuru was first investigated 50 years ago. We obtained detailed histories of residence and exposure to mortuary feasts and performed serial neurological examination and genetic studies where possible. All patients were born a significant period before the mortuary practice of transumption ceased and their estimated incubation periods in some cases exceeded 50 years. The principal clinical features of kuru in the studied patients showed the same progressive cerebellar syndrome that had been previously described. Two patients showed marked cognitive impairment well before preterminal stages, in contrast to earlier clinical descriptions. In these patients, the mean clinical duration of 17 months was longer than the overall average in kuru but similar to that previously reported for the same age group, and this may relate to the effects of both patient age and PRNP codon 129 genotype. Importantly, no evidence for lymphoreticular colonization with prions, seen uniformly in vCJD, was observed in a patient with kuru at tonsil biopsy.
  • Item
    Thumbnail Image
    Glycosaminoglycan Sulphation Affects the Seeded Misfolding of a Mutant Prion Protein
    Lawson, VA ; Lumicisi, B ; Welton, J ; Machalek, D ; Gouramanis, K ; Klemm, HM ; Stewart, JD ; Masters, CL ; Hoke, DE ; Collins, SJ ; Hill, AF ; Ma, J (PUBLIC LIBRARY SCIENCE, 2010-08-23)
    BACKGROUND: The accumulation of protease resistant conformers of the prion protein (PrP(res)) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific. METHODOLOGY/PRINCIPAL FINDING: In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrP(res) formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrP(C) substrate was found to specifically prevent PrP(res) formation seeded by mouse derived PrP(Sc). Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrP(res) formation, while having no effect on PrP(res) formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans. CONCLUSIONS/SIGNIFICANCE: Cofactor requirements for PrP(res) formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.
  • Item
    Thumbnail Image
    Elevation in Sphingomyelin Synthase Activity Is Associated with Increases in Amyloid-Beta Peptide Generation
    Hsiao, J-HT ; Fu, Y ; Hill, AF ; Halliday, GM ; Kim, WS ; Ginsberg, SD (PUBLIC LIBRARY SCIENCE, 2013-08-20)
    A pathological hallmark of Alzheimer's disease (AD) is the presence of amyloid-beta peptide (Aβ) plaques in the brain. Aβ is derived from a sequential proteolysis of the transmenbrane amyloid precursor protein (APP), a process which is dependent on the distribution of lipids present in the plasma membrane. Sphingomyelin is a major membrane lipid, however its role in APP processing is unclear. Here, we assessed the expression of sphingomyelin synthase (SGMS1; the gene responsible for sphingomyelin synthesis) in human brain and found that it was significantly elevated in the hippocampus of AD brains, but not in the cerebellum. Secondly, we assessed the impact of altering SGMS activity on Aβ generation. Inhibition of SGMS activity significantly reduced the level of Aβ in a dose- and time dependent manner. The decrease in Aβ level occurred without changes in APP expression or cell viability. These results when put together indicate that SGMS activity impacts on APP processing to produce Aβ and it could be a contributing factor in Aβ pathology associated with AD.
  • Item
    Thumbnail Image
    Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood
    Cheng, L ; Sharples, RA ; Scicluna, BJ ; Hill, AF (TAYLOR & FRANCIS LTD, 2014-01-01)
    INTRODUCTION: microRNA (miRNA) are small non-coding RNA species that are transcriptionally processed in the host cell and released extracellularly into the bloodstream. Normally involved in post-transcriptional gene silencing, the deregulation of miRNA has been shown to influence pathogenesis of a number of diseases. BACKGROUND: Next-generation deep sequencing (NGS) has provided the ability to profile miRNA in biological fluids making this approach a viable screening tool to detect miRNA biomarkers. However, collection and handling procedures of blood needs to be greatly improved for miRNA analysis in order to reliably detect differences between healthy and disease patients. Furthermore, ribonucleases present in blood can degrade RNA upon collection rendering extracellular miRNA at risk of degradation. These factors have consequently decreased sensitivity and specificity of miRNA biomarker assays. METHODS: Here, we use NGS to profile miRNA in various blood components and identify differences in profiles within peripheral blood compared to cell-free plasma or serum and extracellular vesicles known as exosomes. We also analyse and compare the miRNA content in exosomes prepared by ultracentrifugation methods and commercial exosome isolation kits including treating samples with RNaseA. CONCLUSION: This study demonstrates that exosomal RNA is protected by RNaseA treatment and that exosomes provide a consistent source of miRNA for disease biomarker detection.
  • Item
    Thumbnail Image
    Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles.
    Lötvall, J ; Hill, AF ; Hochberg, F ; Buzás, EI ; Di Vizio, D ; Gardiner, C ; Gho, YS ; Kurochkin, IV ; Mathivanan, S ; Quesenberry, P ; Sahoo, S ; Tahara, H ; Wauben, MH ; Witwer, KW ; Théry, C (Wiley, 2014)
    Secreted membrane-enclosed vesicles, collectively called extracellular vesicles (EVs), which include exosomes, ectosomes, microvesicles, microparticles, apoptotic bodies and other EV subsets, encompass a very rapidly growing scientific field in biology and medicine. Importantly, it is currently technically challenging to obtain a totally pure EV fraction free from non-vesicular components for functional studies, and therefore there is a need to establish guidelines for analyses of these vesicles and reporting of scientific studies on EV biology. Here, the International Society for Extracellular Vesicles (ISEV) provides researchers with a minimal set of biochemical, biophysical and functional standards that should be used to attribute any specific biological cargo or functions to EVs.
  • Item
    Thumbnail Image
    ISEV position paper: extracellular vesicle RNA analysis and bioinformatics.
    Hill, AF ; Pegtel, DM ; Lambertz, U ; Leonardi, T ; O'Driscoll, L ; Pluchino, S ; Ter-Ovanesyan, D ; Nolte-'t Hoen, ENM (Wiley, 2013)
    Extracellular vesicles (EVs) are the collective term for the various vesicles that are released by cells into the extracellular space. Such vesicles include exosomes and microvesicles, which vary by their size and/or protein and genetic cargo. With the discovery that EVs contain genetic material in the form of RNA (evRNA) has come the increased interest in these vesicles for their potential use as sources of disease biomarkers and potential therapeutic agents. Rapid developments in the availability of deep sequencing technologies have enabled the study of EV-related RNA in detail. In October 2012, the International Society for Extracellular Vesicles (ISEV) held a workshop on "evRNA analysis and bioinformatics." Here, we report the conclusions of one of the roundtable discussions where we discussed evRNA analysis technologies and provide some guidelines to researchers in the field to consider when performing such analysis.