Biochemistry and Pharmacology - Research Publications

Permanent URI for this collection

Search Results

Now showing 1 - 10 of 1091
  • Item
    Thumbnail Image
    Tadpole-like Conformations of Huntingtin Exon 1 Are Characterized by Conformational Heterogeneity that Persists regardless of Polyglutamine Length
    Newcombe, EA ; Ruff, KM ; Sethi, A ; Ormsby, AR ; Ramdzan, YM ; Fox, A ; Purcell, AW ; Gooley, PR ; Pappu, R ; Hatters, DM (ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD, 2018-05-11)
    Soluble huntingtin exon 1 (Httex1) with expanded polyglutamine (polyQ) engenders neurotoxicity in Huntington's disease. To uncover the physical basis of this toxicity, we performed structural studies of soluble Httex1 for wild-type and mutant polyQ lengths. Nuclear magnetic resonance experiments show evidence for conformational rigidity across the polyQ region. In contrast, hydrogen-deuterium exchange shows absence of backbone amide protection, suggesting negligible persistence of hydrogen bonds. The seemingly conflicting results are explained by all-atom simulations, which show that Httex1 adopts tadpole-like structures with a globular head encompassing the N-terminal amphipathic and polyQ regions and the tail encompassing the C-terminal proline-rich region. The surface area of the globular domain increases monotonically with polyQ length. This stimulates sharp increases in gain-of-function interactions in cells for expanded polyQ, and one of these interactions is with the stress-granule protein Fus. Our results highlight plausible connections between Httex1 structure and routes to neurotoxicity.
  • Item
    Thumbnail Image
    Ribosomal Protein S3 Gene Silencing Protects Against Cigarette Smoke-Induced Acute Lung Injury
    Dong, J ; Liao, W ; Peh, HY ; Tan, WSD ; Zhou, S ; Wong, WSF (CELL PRESS, 2018-09-07)
    Chronic obstructive pulmonary disease (COPD) is estimated to be the third leading cause of death by 2030. Transcription factor NF-κB may play a critical role in COPD pathogenesis. Ribosomal protein S3 (RPS3), a 40S ribosomal protein essential for executing protein translation, has recently been found to interact with the NF-κB p65 subunit and promote p65 DNA-binding activity. We sought to study whether RPS3 gene silencing could protect against cigarette-smoke (CS)-induced acute lung injury in a mouse model. Effects of an intratracheal RPS3 siRNA in CS-induced lung injury were determined by measuring bronchoalveolar lavage (BAL) fluid cell counts, levels of inflammatory and oxidative damage markers, and NF-κB translocation. Lung RPS3 level was found to be upregulated for the first time with CS exposure, and RPS3 siRNA blocked CS-induced neutrophil counts in BAL fluid. RPS3 siRNA suppressed CS-induced lung inflammatory mediator and oxidative damage marker levels, as well as nuclear p65 accumulation and transcriptional activation. RPS3 siRNA was able to disrupt CS extract (CSE)-induced NF-κB activation in an NF-κB reporter gene assay. We report for the first time that RPS3 gene silencing ameliorated CS-induced acute lung injury, probably via interruption of the NF-κB activity, postulating that RPS3 is a novel therapeutic target for COPD.
  • Item
    Thumbnail Image
    NrdR Transcription Regulation: Global Proteome Analysis and Its Role in Escherichia coli Viability and Virulence
    Naveen, V ; Hsiao, C-D ; Warner, DF (PUBLIC LIBRARY SCIENCE, 2016-06-08)
    Bacterial ribonucleotide reductases (RNRs) play an important role in the synthesis of dNTPs and their expression is regulated by the transcription factors, NrdR and Fur. Recent transcriptomic studies using deletion mutants have indicated a role for NrdR in bacterial chemotaxis and in the maintenance of topoisomerase levels. However, NrdR deletion alone has no effect on bacterial growth or virulence in infected flies or in human blood cells. Furthermore, transcriptomic studies are limited to the deletion strain alone, and so are inadequate for drawing biological implications when the NrdR repressor is active or abundant. Therefore, further examination is warranted of changes in the cellular proteome in response to both NrdR overexpression, as well as deletion, to better understand its functional relevance as a bacterial transcription repressor. Here, we profile bacterial fate under conditions of overexpression and deletion of NrdR in E. coli. Biochemical assays show auxiliary zinc enhances the DNA binding activity of NrdR. We also demonstrate at the physiological level that increased nrdR expression causes a significant reduction in bacterial growth and fitness even at normal temperatures, and causes lethality at elevated temperatures. Corroborating these direct effects, global proteome analysis following NrdR overexpression showed a significant decrease in global protein expression. In parallel, studies on complementary expression of downregulated essential genes polA, eno and thiL showed partial rescue of the fitness defect caused by NrdR overexpression. Deletion of downregulated non-essential genes ygfK and trxA upon NrdR overexpression resulted in diminished bacterial growth and fitness suggesting an additional role for NrdR in regulating other genes. Moreover, in comparison with NrdR deletion, E. coli cells overexpressing NrdR showed significantly diminished adherence to human epithelial cells, reflecting decreased bacterial virulence. These results suggest that elevated expression of NrdR could be a suitable means to retard bacterial growth and virulence, as its elevated expression reduces bacterial fitness and impairs host cell adhesion.
  • Item
    Thumbnail Image
    Resolving Viral-Induced Secondary Bacterial Infection in COPD: A Concise Review
    Wang, H ; Anthony, D ; Selemidis, S ; Vlahos, R ; Bozinovski, S (FRONTIERS MEDIA SA, 2018-10-16)
    Chronic obstructive pulmonary disease (COPD) is a leading cause of disability and death world-wide, where chronic inflammation accelerates lung function decline. Pathological inflammation is worsened by chronic bacterial lung infections and susceptibility to recurrent acute exacerbations of COPD (AECOPD), typically caused by viral and/or bacterial respiratory pathogens. Despite ongoing efforts to reduce AECOPD rates with inhaled corticosteroids, COPD patients remain at heightened risk of developing serious lung infections/AECOPD, frequently leading to hospitalization and infection-dependent delirium. Here, we review emerging mechanisms into why COPD patients are susceptible to chronic bacterial infections and highlight dysregulated inflammation and production of reactive oxygen species (ROS) as central causes. This underlying chronic infection leaves COPD patients particularly vulnerable to acute viral infections, which further destabilize host immunity to bacteria. The pathogeneses of bacterial and viral exacerbations are significant as clinical symptoms are more severe and there is a marked increase in neutrophilic inflammation and tissue damage. AECOPD triggered by a bacterial and viral co-infection increases circulating levels of the systemic inflammatory marker, serum amyloid A (SAA). SAA is a functional agonist for formyl peptide receptor 2 (FPR2/ALX), where it promotes chemotaxis and survival of neutrophils. Excessive levels of SAA can antagonize the protective actions of FPR2/ALX that involve engagement of specialized pro-resolving mediators, such as resolvin-D1. We propose that the anti-microbial and anti-inflammatory actions of specialized pro-resolving mediators, such as resolvin-D1 should be harnessed for the treatment of AECOPD that are complicated by the co-pathogenesis of viruses and bacteria.
  • Item
    Thumbnail Image
    Epithelial disruption: a new paradigm enabling human airway stem cell transplantation
    Farrow, N ; Cmielewski, P ; Donnelley, M ; Rout-Pitt, N ; Moodley, Y ; Bertoncello, I ; Parsons, D (BMC, 2018-06-13)
    BACKGROUND: Airway disease is a primary cause of morbidity and early mortality for patients with cystic fibrosis (CF). Cell transplantation therapy has proven successful for treating immune disorders and may have the potential to correct the airway disease phenotype associated with CF. Since in vivo cell delivery into unconditioned mouse airways leads to inefficient engraftment, we hypothesised that disrupting the epithelial cell layer using the agent polidocanol (PDOC) would facilitate effective transplantation of cultured stem cells in mouse nasal airways. METHODS: In this study, 4 μL of 2% PDOC in phosphate-buffered saline was administered to the nasal airway of mice to disrupt the epithelium. At 2 or 24 h after PDOC treatment, two types of reporter gene-expressing cells were transplanted into the animals: luciferase-transduced human airway basal cells (hABC-Luc) or luciferase-transduced human amnion epithelial cells (hAEC-Luc). Bioluminescence imaging was used to assess the presence of transplanted luciferase-expressing cells over time. Data were evaluated by using two-way analysis of variance with Sidak's multiple comparison. RESULTS: Successful transplantation was observed when hABCs were delivered 2 h after PDOC but was absent when transplantation was performed 24 h after PDOC, suggesting that a greater competitive advantage for the donor cells is present at the earlier time point. The lack of transplantation of hAECs 24 h after PDOC supports the importance of choosing the correct timing and cell type to facilitate transplantation. CONCLUSIONS: These studies into factors that may enable successful airway transplantation of human stem cells showed that extended functioning cell presence is feasible and further supports the development of methods that alter normal epithelial layer integrity. With improvements in efficacy, manipulating the airway epithelium to make it permissive towards cell transplantation may provide another option for safe and effective correction of CF transmembrane conductance regulator function in CF airways.
  • Item
    Thumbnail Image
    Presentation of newly synthesized glycoproteins to CD4+ T lymphocytes. An analysis using influenza hemagglutinin transport mutants.
    Kittlesen, DJ ; Brown, LR ; Braciale, VL ; Sambrook, JP ; Gething, MJ ; Braciale, TJ (Rockefeller University Press, 1993-04-01)
    Human lymphoblastoid cells transiently expressing the hemagglutinin (HA) glycoprotein of influenza virus are rapidly and efficiently recognized by CD4+ HA-specific T lymphocytes. This endogenous presentation pathway is sensitive to chloroquine and is therefore likely related to the classical class II major histocompatibility complex (MHC) exogenous pathway of antigen presentation. In this study we have examined a series of transport-defective HA mutants. We correlate the intracellular fate of the native antigen with its presentation characteristics. We have found that the native antigen must enter the secretory pathway since a cytosolic form is not presented. However, surface expression and normal trafficking through the Golgi apparatus are not required for efficient presentation. Instead, escape of native antigen from the endoplasmic reticulum appears to be both necessary and sufficient for gaining access to a compartment where antigen is processed and binds class II MHC molecules.
  • Item
    Thumbnail Image
    Studies on the mechanism of membrane fusion: site-specific mutagenesis of the hemagglutinin of influenza virus.
    Gething, MJ ; Doms, RW ; York, D ; White, J (Rockefeller University Press, 1986-01)
    Oligonucleotide-directed mutagenesis of a cDNA encoding the hemagglutinin of influenza virus has been used to introduce single base changes into the sequence that codes for the conserved apolar "fusion peptide" at the amino-terminus of the HA2 subunit. The mutant sequences replaced the wild-type gene in SV40-HA recombinant virus vectors, and the altered HA proteins were expressed in simian cells. Three mutants have been constructed that introduce single, nonconservative amino acid changes in the fusion peptide, and three fusion phenotypes were observed: substitution of glutamic acid for the glycine residue at the amino-terminus of HA2 abolished all fusion activity; substitution of glutamic acid for the glycine residue at position 4 in HA2 raised the threshold pH and decreased the efficiency of fusion; and, finally, extension of the hydrophobic stretch by replacement of the glutamic acid at position 11 with glycine yielded a mutant protein that induced fusion of erythrocytes with cells with the same efficiency and pH profile as the wild-type protein. However, the ability of this mutant to induce polykaryon formation was greatly impaired. Nevertheless, all the mutant proteins underwent a pH-dependent conformational change and bound to liposomes. These results are discussed in terms of the mechanism of HA-induced membrane fusion.
  • Item
    Thumbnail Image
    On the role of the transmembrane anchor sequence of influenza hemagglutinin in target cell recognition by class I MHC-restricted, hemagglutinin-specific cytolytic T lymphocytes.
    Braciale, TJ ; Braciale, VL ; Winkler, M ; Stroynowski, I ; Hood, L ; Sambrook, J ; Gething, MJ (Rockefeller University Press, 1987-09-01)
    We have examined the requirement for the transmembrane hydrophobic anchor sequence of the influenza hemagglutinin (HA) in the formation of the antigenic moiety on the surface of target cells recognized by class I MHC-restricted murine CTL. For this analysis we have used a line of CV-1 monkey epithelial cells that express the transfected murine H-2Kd gene product as target cells and have used recombinant SV40-based late replacement vectors to achieve expression of genes encoding wild-type and mutant forms of HA. We have found that the majority of Kd-restricted HA-specific CTL clones recognize target cells that express a secreted HA molecule that lacks the transmembrane and cytoplasmic domains of the parent glycoprotein. Several Kd-restricted CTL clones that recognize subtype-specific and crossreactive epitopes on HA fail to recognize the anchor-negative, secreted HA or chimeric HA molecules containing the transmembrane and cytoplasmic domains of unrelated glycoproteins. These CTL clones appear to be directed to antigenic epitopes located within the transmembrane domain of HA, as defined by their capacity to recognize target cells sensitized with a synthetic 23-amino-acid peptide corresponding to sequences within this domain. The implications of these results for class I MHC-restricted CTL recognition are discussed.
  • Item
    Thumbnail Image
    Cytotoxic T lymphocyte recognition of the influenza hemagglutinin gene product expressed by DNA-mediated gene transfer.
    Braciale, TJ ; Braciale, VL ; Henkel, TJ ; Sambrook, J ; Gething, MJ (Rockefeller University Press, 1984-02-01)
    We have used the technique of DNA-mediated gene transfer to examine cytotoxic T lymphocyte (CTL) recognition of the product of the cloned A/JAPAN/305/57 hemagglutinin (HA) gene in murine (L929) cells. Using both heterogeneous and homogeneous (clonal) populations of type A influenza-specific CTL, we have demonstrated that the HA molecule can serve as a target antigen for both the subtype-specific and the cross-reactive subpopulations of influenza-specific CTL. Our results also raise the possibility that other virus-specified polypeptides may serve as target molecules for cross-reactive CTL.
  • Item
    Thumbnail Image
    Recognition of viral glycoproteins by influenza A-specific cross-reactive cytolytic T lymphocytes.
    Koszinowski, UH ; Allen, H ; Gething, MJ ; Waterfield, MD ; Klenk, HD (Rockefeller University Press, 1980-04-01)
    Two populations of cytolytic T lymphocytes (CTL) generated after influenza A virus infection can be distinguished into one with specificity for the sensitizing hemagglutinin type and a second with cross-reactivity for antigens induced by other type-A influenza viruses. The molecules carrying the antigenic determinants recognized by the cross-reactive CTL were studied. In L-929 cells abortively infected with fowl plague virus, matrix (M) protein synthesis is specifically inhibited, whereas the envelope glycoproteins, hemagglutinin and neuraminidase, are synthesized and incorporated into the plasma membrane. These target cells were lysed by cross-reactive CTL. The envelope proteins of type A/Victoria virus were separated from the other virion components and reconstituted into lipid vesicles that lacked M protein that subsequently were used to prepare artificial target cells. Target-cell formation with vesicles was achieved by addition of fusion-active Sendai virus. These artificial target cells were also susceptible to lysis by cross-reactive CTL. In contrast to previous observations that suggested that the M protein of influenza viruses is recognized by these effector cells, we present evidence that the antigencic determinants induced by the viral glycoproteins are recognized.